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Abstract. This paper presents a comprehensive study on the problem of Best

Arm Retention (BAR), which requires retaining m arms with the best arm in-

cluded from n after some trials, in stochastic multi-armed bandit settings. We

explore many perspectives of the problem.

– We begin by revisiting the lower bound for the (ε, δ)-PAC algorithm for

Best Arm Identification (BAI), where we remove the previously imposed

restriction of δ < 0.5 in the lower bound found in the literature.

– By refining the technique above, we obtain optimal bounds for (ε, δ)-PAC
algorithms for BAR.

– We further study another variant of the problem, called r-BAR, which has

recently found applications in streaming algorithms for multi-armed ban-

dits. The goal of the r-BAR problem is to ensure the expected gap between

the best arm and the optimal arm retained is less than r. We prove tight

sample complexity for the problem.

– We explore the regret minimization problem for r-BAR and develop algo-

rithm beyond pure exploration. We also propose a conjecture regarding the

optimal regret in this setting.
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1 Introduction

The multi-armed bandit (MAB) framework, pioneered by [26], has emerged as a pow-

erful paradigm for modeling sequential decision-making under uncertainty in various

real-world applications, ranging from clinical trials to online advertising. Amongmyr-

iad MAB problems, the Best Arm Identification (BAI), as the pure exploration version

of stochastic MAB, stands out as a critical task, where the objective is to identify the

best arm based on their rewards.

At the beginning of the stochastic MAB game, the player confronts n arms, each

associated with an unknown distribution. At each round t ∈ [T ]1, the player chooses
an arm and receives a reward. The player is trying to obtain higher accumulated re-

wards. Equivalently, the goal is to minimize the expected regret, which is the expected

accumulated reward difference between playing the best arm with the highest mean

and playing with the algorithm chosen arms. In contrast, BAI, the pure exploration

version of MAB, seeks to swiftly identify the arm with the highest mean, ignoring

reward considerations during the decision-making process.

While achieving a high-probability identification of the best arm remains an un-

solved challenge [6,11], an alternative approach involves designing an (ε, δ)-probably
approximately correct (PAC) algorithm for BAI. An (ε, δ)-PAC algorithm can find an

arm whose mean reward is at most ε from the optimal one with probability at least

1 − δ. For this family of algorithms, [24,9] established that the sample complexity is

Θ
(

n
ε2 log

1
δ

)
.

Recent research has explored streaming algorithms [1,12] employingmultiple passes

to retainm arms due tomemory constraints. Theseworks emphasize retaining the best

arm to optimize rewards in subsequent passes. This particular setting naturally leads to

the Best Arm Retention (BAR) problem, a pragmatic extension of BAI accommodating

scenarios with limited memory or computational resources. The name of the problem

was coined in [12] and was also known as “arm trapping problem” in literature [1].

However, previous study for the problem is either incomplete or suboptimal.

In BAR, the objective shifts from identifying the arm with the highest expected

reward to retain a subset of size m containing the best arm for further exploration or

exploitation. In practice, this subset may be subject to constraints like fixed memory

capacity, making BAR an adaptable framework for addressing real-world considera-

tions such as uncertainty, dynamic environments, and regret minimization over time.

Notably, BAR reduces to the classic BAI problem whenm = 1, and becomes easier as

m increases.

Another similar extension of the BAI problem is to identify and retain the top m
arms [16]. However, this extension poses greater complexity and in practice, retaining

the best arm alone often suffices. For instance, if one would like to perform some

regret minimization algorithm on them arms, retaining the optimal one already yields

optimal regret. Notably, (ε, δ)-PAC algorithm requires Ω
(

n
ε2 log

m
δ

)
samples to retain

the topm arms [17], which is worse than our bounds for BAR in Theorem 1.

In this work, we call an arm ε-optimal if the mean gap between the best arm and

this arm is less than ε. We address the (ε, δ)-BAR problem, the PAC setting of BAR,

1 T can be a stopping time.
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where the objective is to ensure that the set ofm retained arms contains an ε-optimal

arm with at least 1 − δ probability after observing as few samples as possible. The

least number of samples to fulfill the requirement is called the sample complexity of

(ε, δ)-BAR.

Theorem 1. For any (ε, δ)-PAC algorithm for BAR satisfying ε ≤ 1
8 and δ ≤ n−m

n (1−
β), where β ∈ (0, 1) is a universal constant, the sample complexity is

Θ

(
n−m

ε2
log

n−m

nδ

)
.

It is trivial that the sample complexity is zero when δ ≥ n−m
n because we can choose

m arms uniformly at random. In fact, the lower bound in Theorem 1 addresses almost

all feasible δ except n−m
n − δ = o

(
1
n

)
, as explained in Remark 1.

If the subsequent exploitation only requires obtaining a low regret, as in [12], then

it suffices for the expected gap between the mean of the best and the optimal in the

retained arm to be small. That is a weaker requirement than (ε, δ)-PAC learnability.

To capture the complexity of this requirement, we define the problem r-BAR, where
the goal is to guarantee the expected gap is less than r. As before, when m = 1, it is
equivalent to identifying an arm whose mean is at most r from the optimal one in ex-

pectation. We call it r-BAI problem, which has been investigated in [3]. We determine

the sample complexity of this problem.

Theorem 2. The sample complexity of r-BAR is Θ
(

(n−m)3

(nr)2

)
.

We further consider the decision-making process beyond pure exploration. Like the

classic MAB, we prove both upper bounds and lower bounds for regret minimization.

To this end, we introduce a new complexity measure called regret complexity, which

intuitively measures howmuch regret one has to pay to retain an arm whose expected

mean reward is at most r from the best. The formal definition of the regret complexity

is in Section 3.3

Theorem 3. There exists an algorithm for r-BAR such that the regret complexity is no

more than

O

(
(n−m)2

nr

(
1 +

√
m

n−m

))
,

and for any algorithm, the regret complexity is no less than

Ω

(
(n−m)2

nr

)
.

The gap between the upper and the lower bounds is

(
1 +

√
m

n−m

)
. Thus our bounds

are tight for n − m = Ω(n). When m is very close to n, the gap is

√
n, and we will

explain in Section 5.3 that eliminating this gap is not easy because different instances

requires different sample size and therefore a more sophisticated adaptive strategy is

required for an optimal algorithm.
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2 Related Work

Pure exploration in stochastic MAB (see [22]) has garnered significant attention and

has been explored in various settings, with the most prominent being BAI. Research in

this area has investigated sample complexity under fixed confidence [9,14,11,6,32,27],

success probability of identifying the best armwith a fixed budget [2,18,34], and (ε, δ)-
PAC algorithms for BAI, aiming to identify an ε-optimal armwith fixed confidence [24,13,15].

These settings naturally extend to finding the top m arms [16,17,33,4,30], or other

structured arm groups [7,20,29,8,10,23,25].

The concept of Best ArmRetention (BAR)was introduced by [12], with a similar idea

of “trapping the best arm” first appearing in [1] in the context of stream algorithms.

The notion of r-BAI (as a special case of r-BAR when m = 1), also referred to as

“simple regret”, was discussed by [3]. To the best of our knowledge, this paper is the

first systematic investigation of the BAR problem.

3 Notation and Preliminaries

For any integer n > 0, let [n] denote the set { 1, 2, . . . , n }. If x, y ∈ R and x ≤ y,
[x, y] denotes the closed interval { z : x ≤ z ≤ y }. Let Ber(x) denote the Bernoulli

distribution with mean x ∈ [0, 1]. The Kullback-Leibler (KL) divergence between two

Bernoulli distributions with means x and y is given by d(x, y) := x log x
y + (1 −

x) log 1−x
1−y for brevity. There are some properties of the KL divergence:

Fact 1 (a) d(·, y) (or d(x, ·)) is convex for any fixed y (or x);
(b) for any 0 ≤ a ≤ x ≤ y ≤ b ≤ 1, d(a, b) ≥ d(x, y);

Proof. (a) Directly calculating
∂2d(x,y)

∂x2 ≥ 0 implies d(·, y) is convex and d(x, ·) is
similar.

(b) Since
∂d(x,y)

∂x

∣∣∣
x=y

= 0, d(·, y) achieves the minimum in x = y. Similarly, d(x, y)

is the minimum of d(x, ·). Therefore, d(a, b) ≥ d(x, b) ≥ d(x, y).

3.1 Mutil-Armed Bandits

In this paper, we exclusively consider the stochasticMulti-Armed Bandit (MAB) prob-

lem,which can be represented by ann-dimensional product distribution ν = (ν1, ν2, . . . , νn).
Each distribution corresponds to an arm. At each round/day t ∈ [T ], the player selects
an arm at ∈ [n] and receives a reward rt ∼ νat

independently.

Let µ = (µ1, µ2, . . . , µn) denote themean vector of ν. Define i∗ = argmaxi∈[n] µi

as the best arm with the highest mean, and let ∆i = µi∗ − µi represent the mean

gap between the best arm and arm i. Additionally, let Ti =
∑T

t=1 1at=i denote the

number of times arm i is pulled. The player’s objective is to maximize the accumu-

lated reward

∑T
t=1 rt, or equivalently, to minimize the regret, defined as R(n, T ) =

Tµi∗ − E
[∑T

t=1 rt

]
= E [

∑n
i=1 ∆iTi], which measures the difference between the

accumulated expected reward of the best arm and that of the algorithm. We abbrevi-

ate R(n, T ) as R when the context is clear and refer to a product distribution ν as an
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MAB instance. If each νi is a Bernoulli distribution, we also use µ to denote an MAB

instance.

For the regret of the MAB problem, there exist several algorithms that achieve

tight bounds ofΘ
(√

nT
)
up to a constant factor, such as the Online Stochastic Mirror

Descent (OSMD) or the Follow the Regularized Leader (FTRL) algorithm. The following

result from [21] provides a refined constant factor and refer to Appendix C for the

detail of the algorithm.

Proposition 1 ([21], Theorem 11). Running the procedure MirrorDescent on any

MAB instance with specific parameters, the regret is at most R(n, T ) ≤
√
2nT .

3.2 Best Arm Identification

Given an MAB instance ν, the Best Arm Identification (BAI) problem aims to identify

the arm i∗ with the highest mean based on as few samples as possible. Different from

the fixed T in MAB, the sample size T here is a stopping time with respect to the

filtration (Ft)t∈N where Ft = σ (a1, r1, a2, r2, . . . , at, rt). In our paper, we focus on

the (ε, δ)-PAC setting of BAI, denoted as (ε, δ)-BAI, which requires the algorithm to

output an ε-optimal arm with probability at least 1 − δ for any MAB instance. Here,

an arm i is considered ε-optimal if µi∗ − µi < ε.
The first tight bound for (ε, δ)-BAI was achieved by a median elimination algo-

rithm in [9]. We will provide the details of this algorithm in Appendix D for the com-

pleteness.

Proposition 2 ([9], Theorem 10). Given ε and δ, and an arm set S, the median elim-

ination algorithm î = MedianElimination(ε, δ, S), taking ε, δ, and S as input and out-

putting an ε-optimal arm, is an (ε, δ)-BAI algorithmwith sample size T = O
(

n
ε2 log

1
δ

)
.

3.3 Best Arm Retention

Given an MAB instance ν, the Best Arm Retention (BAR) problem involves retaining

m arms ST out of n after T samples, ensuring that the best arm is included in the

retained set i∗ ∈ ST . Similar to BAI, in our paper the sample size T is a stopping time

with respect to (Ft)t∈N. Correspondingly, the (ε, δ)-PAC version of BAR, denoted as

(ε, δ)-BAR, requires that the retainedm arms contain at least one ε-optimal arm with

probability at least 1− δ.
In practice, to achieve low regret in a multiple-pass streaming algorithm, it suffices

for the expected gap
2
between the mean of the best arm and the optimal arm in the

retained m arms to be small. We define r-BAR as the problem to guarantee that the

expected gap is at most r, namely E [µi∗ −maxi∈ST
µi] < r.

The regret for a r-BAR algorithm, R(n) = Tµi∗ − E
[∑T

t=1 rt

]
, is similar to the

regret defined in Section 3.1 except that T is a stopping time. When referring to the

sample (or regret) complexity of r-BAR, we denote the minimum samples (or regret)

required by any algorithm capable of solving r-BAR for any MAB instance.

2

We use mean gap to refer to the mean difference between i∗ and the other fixed arm, and

expected gap to denote the expected difference in means between i∗ and the optimal arm of

an arm subset, where the randomness of the expectation arises from the arm subset.
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4 An (ε, δ)-PAC Algorithm for BAR

In this section, we will design a simple algorithm with the assistance of the median

elimination algorithm to establish an upper bound, followed by a lower bound based

on likelihood ratio.

4.1 Upper Bound for (ε, δ)-BAR

Our algorithm presented in Algorithm 1 is straightforward. We first uniformly at ran-

dom choose n−m+ 1 arms from the set of n arms. Next, we execute the MedianE-

limination algorithm (Algorithm 6) to obtain an ε-optimal arm (with respect to the

chosen arms) with probability 1− n
n−m+1 · δ. Finally, we output this arm along with

the remainingm− 1 arms that were not chosen in the first stage.

Algorithm 1 (ε, δ)-PAC Algorithm for BAR

Input: ε, δ,m, arm set S
Output: m arms

1: Choose n−m+ 1 arms denoted as S′
from n arms uniformly at random.

2: Run the median elimination algorithm i′ = MedianElimination(ε, n
n−m+1

δ, S′).

3: return S \ S′ ∪ {i′}.

Theorem 4 (Part of Theorem 1).Algorithm 1 is an (ε, δ)-BAR algorithm with a sam-

ple size of O
(
n−m+1

ε2 log n−m+1
nδ

)
.

Proof. Our algorithm fails if and only if:

(1) the optimal arm was chosen in the first stage, and

(2) the procedure MedianElimination failed to return a nearly optimal arm.

Therefore, the failure probability is given by
n−m+1

n · n
n−m+1 ·δ = δ. Furthermore, the

sample complexity due to theMedianElimination procedure isO
(
n−m+1

ε2 log n−m+1
nδ

)
by Proposition 2.

4.2 Lower Bounds

Recall themean vector µ = (µ1, µ2, · · · , µn) denotes aMAB instance, where each arm

i follows a Bernoulli distribution with mean µi. Consider the following n instances:

H1 = ( 12+ε, 1
2 , . . . ,

1
2 ), and for j ̸= 1,Hj differs fromH1 only inHj(j) =

1
2+2ε. We

use Pri [·] and Ei [·] to denote probability and expectation of the algorithm running

on instance Hi.

At a high level, if an algorithm outputs arm j as the best arm with a higher prob-

ability in Hj than in H1, then this algorithm, to some extent, distinguishes the two

instances, indicating that arm j should be pulled enough times.
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The well-known lower bound for (ε, δ)-BAI, Ω
(

n
ε2 log

1
δ

)
, is tight but with the

restriction of δ < 0.5 [24]. The lower bound proof techniques from previous literature

(e.g. [24]) are mainly based on the following observation: given two instances H1

and Hj , any proper algorithm should retain arm j with probability at least 1 − δ on

Hj , but at most δ on H1. When 1 − δ > δ, enough pulls for arm j are required to

distinguish between these two instances, which necessitates δ < 1
2 . However, when

δ ≥ 1
2 , a more refined argument is required.

We will begin with a warm-up lower bound for BAR withm = 1 (or equivalently,
BAI) to demonstrate how to eliminate this restriction in Theorem 5. For δ ≥ 0.5, we

know that Θ
(

n
ε2 log

1
δ

)
= Θ

(
(1−δ)n

ε2

)
. Therefore our result shows that the lower

bound Ω
(

n
ε2 log

1
δ

)
holds for almost all feasible δ. Subsequently, we will extend this

method to BAR with generalm.

BAI: Warm-up

Theorem 5. For any (ε, δ)-BAI algorithm satisfying 1 − δ = 1+Ω(1)
n and ε ≤ 1

8 , the

sample size when running on H1 is E1 [T ] = Ω
(

(1−δ)n−1
ε2

)
.

We will prove Theorem 5 in this part. Given any algorithm A, we define B as{
i ∈ { 2, . . . , n } : Pr1 [A outputs arm i] ≤ δ

n−k

}
, where k is an integer to be de-

termined later such that
δ

n−k ≤ 1 − δ. It is evident that |B| ≥ k. Otherwise, there

are n − k arms j ∈ { 2, . . . , n− 1 } satisfying Pr1 [A outputs arm j] > δ
n−k and

this contradicts that A is an (ε, δ)-PAC algorithm. However, for each i ∈ B, we have

Pri [A outputs arm i] ≥ 1 − δ. The following lemma obtained by likelihood ratio

shows that arm i must be pulled enough times. The proof is given in Appendix A for

completeness.

Lemma 1 ([19], Lemma 1). For any twoMAB instances µ, µ′
with n arms, and for any

algorithmwith almost-surely finite stopping timeT and event E ∈ FT ,
∑n

i=1 (Eµ [Ti] · d(µi, µ
′
i)) ≥

d(Prµ [E ] ,Prµ′ [E ]).

Here we only consider the algorithm with almost-surely finite stopping time. Oth-

erwise the sample complexity is infinite and the theorem obviously holds. There-

fore, for any i ∈ B, we can apply Lemma 1 to instances H1 and Hi with Ei =
{A outputs arm i } to obtainE1 [Ti] ·d (0.5, 0.5 + 2ε) ≥ d (Pr1 [Ei] ,Pri [Ei]) . Since
d(0.5, 0.5 + 2ε) ≤ 12ε2 and d (Pr1 [Ei] ,Pri [Ei]) ≥ d

(
δ

n−k , 1− δ
)
by Fact 1, then

12ε2 · E1 [Ti] ≥ d
(

δ
n−k , 1− δ

)
. Summing up all i ∈ B, we have 12ε2E1 [T ] ≥ k ·

d
(

δ
n−k , 1− δ

)
.Here we choose k = n− δ

1−δ
2 + 1

2n

= Ω(n), and thus δ
n−k = 1−δ

2 + 1
2n .

The following lemma, which will be proven in Appendix B, assists us in bounding the

KL divergence:

Lemma 2. d( 1−δ
2 + 1

2n , 1− δ) = Ω
(
1−δ
2 − 1

2n

)
if 1− δ = 1+Ω(1)

n .

Therefore sample complexity E1 [T ] = Ω
(

(1−δ)n−1
ε2

)
if 1− δ = 1+Ω(1)

n .
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Lower Bound for (ε, δ)-BAR In this part, we establish a more general lower bound

for the (ε, δ)-PAC algorithms for best arm retention (BAR) by refining arguments in

the proof of Theorem 5. Similar to the proof for BAI, we only need to consider the

algorithm with the almost-surely finite stopping time for the sample complexity. The

following theorem is stronger than the lower bound in Theorem 1.

Theorem 6. For any (ε, δ)-BAR algorithm with almost-surely finite stopping time such

that ε ≤ 1
8 and δ ≤ n−m

n (1 − β), where β is a constant, its sample complexity on the

input H1 satisfies E1 [T − T1] = Ω
(

n−m−δ
ε2 log n−m−δ

(n−1)δ

)
.

We reserve the notations introduced in the previous parts except Ei = {A retains arm i }.
For any algorithm, we have m = E1 [

∑n
i=1 1Ei ] =

∑n
i=1 Pr1 [Ei].

If we directly apply an argument similar to that in the proof of Theorem 5 here,

then there exists at least k arms retained with probability at most
m−(1−δ)

n−k . Therefore

the lower bound is 12ε2E1 [T − T1] ≥ k · d
(

m−(1−δ)
n−k , 1− δ

)
.We should choose a k

satisfying
m−(1−δ)

n−k < 1−δ tomaximize k·d
(

m−(1−δ)
n−k , 1− δ

)
. Consider a special case

withm = n−1 and δ = 1
2n , where we can only choose k = 1. Thus k ·d(m−(1−δ)

n−k , 1−
δ) = d(1− 1− 1

2n

n−1 , 1− 1
2n ) = Θ

(
1
n

)
, which leads to E1 [T ] = Ω

(
1

ε2n

)
. However, the

upper bound is T ≤ O
(

1
ε2

)
in this case.

The above analysis is too pessimistic as we classify suboptimal arms (those in B
and those not inB) via a single threshold. The following lemma proved in Appendix B

allows us to argue about their sum directly.

Lemma 3. For any x1, x2 . . . , xn ∈ [0, 1] with average a :=
∑

i xi

n < b ∈ [0, 1], then∑
i:xi<b d(xi, b) ≥ n · d(a, b).

Armed with Lemma 3, we can sum up all i such that Pr1 [Ei] ≤ 1 − δ to which

Lemma 1 can be applied.

12ε2E1 [T − T1] ≥
∑

i:Pr1[Ei]<1−δ

d (Pr1 [Ei] ,Pri [Ei]) (By Lemma 1)

≥
∑

i:Pr1[Ei]<1−δ

d (Pr1 [Ei] , 1− δ) (By Fact 1)

≥ (n− 1) · d
(
m− (1− δ)

n− 1
, 1− δ

)
. (By Lemma 3)

Finally, we use a lemma proved in Appendix B to help analyze the KL divergence:

Lemma 4. For any 0 < a < b < 1, if b−a
a = Ω(1), then d(b, a) = Ω

(
b · log b

a

)
.
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Now we are ready to bound d(m−(1−δ)
n−1 , 1− δ). Let δ = n−m

n (1− β) where β is a

universal constant.

d

(
m− (1− δ)

n− 1
, 1− δ

)
= d

(
n−m− δ

n− 1
, δ

)
(d(x, y) = d(1− x, 1− y))

= d

(
n−m

n

(
1 +

β

n− 1

)
,
n−m

n
(1− β)

)
≜ d(B,A).

Here
B−A
A = β/(n−1)+β

1−β = Ω(1), thereby d
(

m−(1−δ)
n−1 , 1− δ

)
= Ω

(
n−m−δ
n−1 log n−m−δ

(n−1)δ

)
.

Thus, E1 [T − T1] = Ω
(

n−m−δ
ε2 log n−m−δ

(n−1)δ

)
.

Remark 1. This approach encounters limitations when δ approaches the boundary

n−m
n , specifically when

n−m
n − δ = o

(
1
n

)
. For instance, consider the scenario where

m = n−1 and δ = 1
n −

1
n2 . In this case, d(

m−(1−δ)
n−1 , 1−δ) = d(n−1

n − 1
n2(n−1) ,

n−1
n +

1
n2 ) = Θ

(
1
n2

)
. Consequently, the resulting lower bound is Ω

(
1

ε2n

)
.

Suppose there exists an algorithm that achieves this lower bound, making it an

(ε, 1
n − 1

n2 )-BAR algorithm with a sample complexity of c 1
ε2n , where c is a universal

constant independent of n. However, as n grows sufficiently large, such that c 1
ε2n ≤ 0,

this algorithm is paradoxical. It allows for retaining an ε-optimal arm with a higher

probability than
n−1
n but without exploration, which is logically impossible.

5 r-BAR

Recall that r-BAR requires the mean difference between the best arm from n arms and

the optimal arm from the retained pool of sizem < n is less than r. In this section, we

study both the sample complexity and theminimum regret of this problem. Our results

reveal some connections and distinctions between these two optimization objectives.

5.1 Sample Complexity for r-BAR

Exploration Algorithm for r-BAR Directly adapting the (ε, δ)-PAC algorithm to

a r-BAR setting would imply an expected gap bounded by δ + (1 − δ)ε ≤ r. This
translates to δ ≤ r and ε ≤ 2r for δ ≤ 0.5. Consequently, the sample complexity of

this algorithm becomes O
(
n−m
r2 log n−m

nr

)
. However, when r is small, this bound is

not tight compared to the optimal bound in Theorem 2. To address this, we leverage

the insight that a lower expected gap suggests lower regret. Thus, we employ the pro-

cedure MirrorDescent and choose arms with probabilities proportional to their pull

counts. A similar approach has been explored in [3,5,12]. Let us restate the algorithm

for completeness:

Lemma 5. Let i∗ be the best arm among S , then for n arms with any mean µ as input,

Algorithm 2 satisfies E [µi∗ − µi′ ] ≤
√

2n
T .
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Algorithm 2 Find best arm with online stochastic mirror descent

Input: arm set S of size n and time horizon T
Output: a good arm

1: procedure FindBest(S, T )
2: Run MirrorDescent on S with T rounds

3: Compute Ti, ∀i ∈ [n]: the number of times arm i is pulled during T rounds

4: Choose arm i′ from S with probability
Ti′
T

5: return arm i′

Proof. Direct calculation yields

E [µi∗ − µi′ ] = E [E [µi∗ − µi′ |T1, T2, . . . , Tn]]

= E

 ∑
arm j∈S

∆j ·Pr [i′ = j|T1, T2, . . . , Tn]

 = E

 ∑
arm j∈S

∆j ·
Tj

T

 ≤
√

2n

T
,

where the last inequality follows from Proposition 1.

We can employ the previously described subroutine to devise our final algorithm.

Firstly, we randomly select n−m+1 arms from the set of n arms, denoted as S′
. We

then run Algorithm 2 with a sufficient number of rounds. Finally, we add the output

arm to the remaining unchosen arms to form the output set.

Algorithm 3 Optimal sampling for r-BAR

Input: arm set S of size n ≥ m and expectation gap r
Output: m arms

1: Sample n−m+ 1 arms, denoted as S′
, uniformly at random from S

2: i′ = FindBest(S′, T ∗) where T ∗ = 2(n−m+2)3

(nr)2

3: return { i′ } ∪ S\S′

Theorem 7 (Part of Theorem 2). Algorithm 3 is an algorithm for r-BAR with sample

complexity O
(

(n−m)3

(nr)2

)
.

Proof. The sample complexity is straightforward. To demonstrate that the expected

gap between the best arm in { i′ }∪S\S′
, denoted by î, and the best arm i∗ among all

n arms is less than r, note that i∗ is excluded only if i∗ ∈ S′
. Thus,

E [µi∗ − µî] = Pr [i∗ /∈ S′]E [µi∗ − µî|i
∗ /∈ S′] +Pr [i∗ ∈ S′]E [µi∗ − µî|i

∗ ∈ S′]

≤ 0 +
n−m+ 1

n

√
2(n−m+ 1)

T ∗ < r,

where the inequality follows from Lemma 5.
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Lower Bound of Theorem 2 Let î be the best arm among the retained m arms.

For any r-BAR algorithm, we have E [µi∗ − µî] ≤ r. By Markov inequality, we have

Pr [µi∗ − µî ≥ cr] ≤ 1
c for any c > 0. This implies that an r-BAR algorithm is also

a (cr, 1
c )-PAC algorithm for BAR. Thus then sample complexity is bounded below by

Ω
(

n−m
(cr)2 log c(n−m)

n

)
, as per Theorem 6. Choosing c = 2n

n−m completes the proof for

the lower bound of Theorem 2

5.2 Regret Minimization for r-BAR

Upper Bound While a pure exploration algorithm suffices for r-BAR, it may yield

large regret. For instance, if i∗ is not chosen by Algorithm 3 initially, a low-regret

algorithm like MirrorDescent running on the suboptimal arm can still result in sig-

nificant regret. To address this issue, we first run FindBest on all n arms for a few

rounds. We then add the output arm to the randomly chosen n−m+ 1 arms. Subse-

quently, we run FindBest on these n−m+2 arms again, with the subsequent process

identical to that of Algorithm 3, except for retaining the optimal arm from the initial

process. Define L2 = 2(n−m+2)3

(n−1)2r2 and L1 = m−2
n−1 L2. Our algorithm outlined in Algo-

rithm 4 follows a similar approach as proposed in [12], albeit with distinct objectives.

Algorithm 4 Low-regret sampling for BAR

Input: arm set S of size n ≥ m and expectation gap r
Output: m arms

1: i1 = FindBest(S,L1)
2: Sample n−m+ 1 arms, denoted as S′

, uniformly at random from S \ i1
3: i2 = FindBest(S′ ∪ { i1 } , L2)
4: Uniformly at random choose n−m arms from S′\ { i1, i2 } to drop

5: return the remaining arms

Theorem 8. Algorithm 4 is an algorithm for r-BAR with regret O

(√
(n−m)3

nr2

)
.

Proof. The proof follows a similar structure to that of Theorem 7. Let î denote the best
arm among the retained arms. Since i∗ will be dropped only if i∗ ∈ S′

, thus

E [µi∗ − µî] = Pr [i∗ ∈ S′]E [µi∗ − µî|i
∗ ∈ S′]

= Pr [i∗ ̸= i1]Pr [i∗ ∈ S′|i∗ ̸= i1]E [µi∗ − µî|i
∗ ∈ S′]

≤ n−m+ 1

n− 1
E [µi∗ − µî|i

∗ ∈ S′]

≤ n−m+ 1

n− 1

√
2(n−m+ 2)

L2
< r,
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where the last inequality follows from Lemma 5.

Regarding regret, the initial FindBest procedure incurs a regret of

√
2nL1. In the

subsequent step, let i′ denote the best arm in S′ ∪ i1. The regret between playing i′

and the algorithm over L2 rounds amounts to

√
2(n−m+ 2)L2. If i

′
is not i∗, then

E [µi∗ − µi′ ] = Pr [i∗ /∈ S′ ∪ { i1 }]E [µi∗ − µi′ |i∗ /∈ S′ ∪ { i1 }]
= Pr [i1 ̸= i∗]Pr [i∗ /∈ S′|i∗ ̸= i1]E [µi∗ − µi′ |i∗ /∈ S′ ∪ { i1 }]

≤ m− 2

n− 1
Pr [i1 ̸= i∗]E [µi∗ − µi1 |i∗ /∈ S′ ∪ { i1 }]

♡
=

m− 2

n− 1
Pr [i1 ̸= i∗]E [µi∗ − µi1 |i1 ̸= i∗]

=
m− 2

n− 1
E [µi∗ − µi1 ]

♣
≤ m− 2

n− 1

√
2n

L1
,

where ♡ follows that µi∗ − µi1 is independent of 1i∗ /∈S′ conditioned on i∗ ̸= i1,
and ♣ is because of Lemma 5. Therefore the regret is

√
2nL1 +

√
2(n−m+ 2)L2) +

m− 2

n− 1

√
2n

L1
L2 ≤ O

(√
m(n−m)3

nr
+

(n−m)2

nr

)

≤ O

(
(n−m)2

nr

(
1 +

√
m

n−m

))
.

When n−m = Ω(n), our regret bound is O
(

(n−m)2

nr

)
.

Proof of the Lower Bound of Theorem 3 For the scenario where the algorithm

does not almost surely stop within finite time, achieving a large regret lower bound

requires more effort. In such cases, we cannot deduce a large regret by infinite sample

complexity because the algorithm may continually pull the best arm. To tackle this,

we first establish a lower bound for algorithms with an almost-surely finite stopping

time, and then reduce any algorithm to this case.

For the algorithm with almost-surely finite stopping time, similar to the proof of

the lower bound in Section 5.1, an r-BAR algorithm also acts as a ( 2nr
n−m , n−m

2n )-PAC
algorithm for BAR. Consequently, it must play the suboptimal arms E1 [T − T1] =

Ω
(

(n−m)3

(nr)2

)
times onH1 with ε =

2nr
n−m . Therefore, the regret byWald’s equation (see

e.g. [28]) is Ω
(

2nr
n−mE1 [T − T1]

)
= Ω

(
(n−m)2

nr

)
.

Now assume there exists a
r
2 -BAR algorithm A with regret o

(
(n−m)2

nr

)
, and let

T ′ = ω
(

(n−m)2

nr2

)
be a fixed number. We can construct an algorithm A′

with finite

stopping time as follows: If A stops with T < T ′
and outputs ST , then A′

simulates

it. Otherwise, A′
stops in the T ′

-th round, chooses an arm i′ proportional to the pull

times of each arm in T ′
rounds, similar to the procedure FindBest, and outputs it with

m− 1 randomly chosen arms as ST ′ .
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We use EA [·] and EA′ [·] to denote the expectation of the corresponding algo-

rithms running on some MAB instance and let î denote the optimal arm among the

retained subset arms, similarly forPrA [·] andPrA′ [·]. We use Ti to denote the num-

ber of times that i is pulled andR =
∑n

i=1 ∆iTi.

It is evident that the regret of A′
is less than that of A because it may stop earlier.

Now we claim that A′
is an r-BAR algorithm with regret o

(
(n−m)2

nr

)
:

EA′ [µi∗ − µî]

= PrA′ [T ≥ T ′]EA′ [µi∗ − µî|T ≥ T ′] +PrA′ [T < T ′]EA′ [µi∗ − µî|T < T ′]

≤ PrA [T ≥ T ′]EA′ [µi∗ − µi′ |T ≥ T ′] +PrA [T < T ′]EA [µi∗ − µî|T < T ′]

≤ PrA [T ≥ T ′]EA′

[
R
T ′ |T ≥ T ′

]
+EA [µi∗ − µî]

≤ 1

T ′PrA [T ≥ T ′]EA [R|T ≥ T ′] +
r

2
≤ 1

T ′EA [R] +
r

2
≤ r,

which leads to a contradiction. Hence, the regret of any r-BAR algorithm isΩ
(

(n−m)2

nr

)
.

5.3 Difference between Sample Complexity and Regret Minimization

The proof of the lower bound in Section 5.1 reveals that the challenging scenario for

r-BAR with optimal regret occurs in H1 with ε = Θ
(

nr
n−m

)
. Our analysis in Sec-

tion 4.2 shows that, on this instance, the requisite number of rounds T isΘ
(

(n−m)3

(nr)2

)
in expectation.

If we consider an MAB game with fixed rounds T = Θ
(

(n−m)3

(nr)2

)
, it is well

known that the optimal regret is Θ
(√

nT
)

= O
(

(n−m)2

nr

(
1 +

√
m

n−m

))
, which

matches our upper bound in Theorem 3. Previous works have shown that this re-

gret lower bound for MAB problem is achieved on the hard instance H1 but with

mean gap parameter ε′=Θ
(√

n
T

)
= Θ

(√
n

n−m · ε
)
(see [22]). This indicates a re-

gret lower bound for Algorithm 4: if an r-BAR algorithm runs for T = Θ
(

(n−m)3

(nr)2

)
rounds on any instances (as our Algorithm 4 does), then it has to suffer a regret of

Ω
(

(n−m)2

nr

(
1 +

√
m

n−m

))
on some instances.

This discrepancy between our regret upper and lower bounds indicates a natural

idea to improve the algorithm. Note that H1 with ε′ is not the hardest instance for

r-BAR. An optimal algorithm need not play Θ
(

(n−m)3

(nr)2

)
rounds on this instance. It

should bemore adaptive, sampling for different number of times on different instances,

rather than treating all instances equally by handling them as the hardest one.

In a nutshell, we conjecture that our lower bound is tight, and a more sophisticated

algorithm is required to obtain optimal regret upper bounds.

Conjecture 1. The regret complexity of the r-BAR is Θ
(

(n−m)2

nr

)
.
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A Proof of Lemma 1

Let Ti(s) denote the index of the s-th pull of arm i for s ≤ Ti. Define the log-likelihood

LT (a1, r1, a2, r2, . . . , aT , rT ) = log
Prµ[a1,r1,a2,r2,...,aT ,rT ]
Prµ′ [a1,r1,a2,r2,...,aT ,rT ] , abbreviated asLT when

the context is clear. By applying the chain rule to LT , we have

LT = log

∏T
t=1 Prµ [at|Ft−1] ·Prµ [rt|Ft−1, at]∏T
t=1 Prµ′ [at|Ft−1] ·Prµ′ [rt|Ft−1, at]

=

T∑
t=1

log
Prµ [rt|at]
Prµ′ [rt|at]

=

n∑
i=1

Ti∑
s=1

log
Prµ

[
rTi(s)|aTi(s)

]
Prµ′

[
rTi(s)|aTi(s)

] ,

https://doi.org/10.48550/ARXIV.2311.03992
https://doi.org/10.48550/ARXIV.2311.03992
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where the second equality follows fromPrµ [at|Ft−1] = Prµ′ [at|Ft−1] and that rt is

independent of Ft−1 conditioned on at. With Eµ

[
log

Prµ[rTi(s)
|aTi(s)]

Prµ′ [rTi(s)
|aTi(s)]

]
= d(µi, µ

′
i),

we apply Wald’s Lemma (see e.g. [28]) to

∑n
i=1

∑Ti

s=1 log
Prµ[rTi(s)

|aTi(s)]
Prµ′ [rTi(s)

|aTi(s)]
to obtain:

Eµ [LT ] =

n∑
i=1

Eµ [Ti] d (µi, µ
′
i) . (1)

The remaining task is to prove Eµ [LT ] ≥ d(Prµ [E ] ,Prµ′ [E ]) for any event E ∈
FT , we reformulate the definition of LT as

Prµ′ [a1, r1, a2, r2, . . . , aT , rT ] = exp{−L} ·Prµ [a1, r1, a2, r2, . . . , aT , rT ]

Summing over all ω ∈ E , we obtain

Prµ′ [E ] = Eµ [1E · exp{−LT }] . (2)

Continuing to lower bound Equation (2), we have

Prµ′ [E ] = Eµ [Eµ [1E · exp{−L}|1E ]]

≥ Eµ [1E · exp{−Eµ [L|1E ]}]
= Prµ [E ]Eµ [1E · exp{−Eµ [L|1E ]}|E ] +Prµ

[
Ē
]
· 0

= Prµ [E ] exp{−Eµ [LT |E ]},

where the inequality follows from the Jensen inequality. Rearranging, we getEµ [LT |E ] ≥
log

Prµ[E]
Prµ′ [E] . Similarly, Eµ

[
LT |Ē

]
≥ log

Prµ[Ē]
Prµ′ [Ē]

. Hence, we conclude

Eµ [LT ] = Prµ [E ]Eµ [LT |E ] +Prµ
[
Ē
]
Eµ

[
LT |Ē

]
≥ Prµ [E ] log

Prµ [E ]
Prµ′ [E ]

+Prµ
[
Ē
]
log

Prµ
[
Ē
]

Prµ′
[
Ē
]

= d(Prµ [E ] ,Prµ′ [E ]),

which completes our proof in conjunction with Equation (1).

B Bounds of KL Divergence

We will utilize the following inequalities from [31] to bound the KL divergence.

Fact 2 The following inequalities hold.

(a) log(1 + x) ≥ x
1+x ,∀x > −1;

(b) log(1 + x) ≥ x
1+x (1 +

x
2+x ) =

2x
2+x ,∀x > 0;

(c) log(1 + x) ≥ x
1+x

2+x
2 , if − 1 < x ≤ 0.



On the Problem of Best Arm Retention 17

Lemma 6 (Restate Lemma2). d( 1−δ
2 + 1

2n , 1−δ) = Ω
(
1−δ
2 − 1

2n

)
if 1−δ = 1+Ω(1)

n .

Proof. By definition,

d(
1− δ

2
+

1

2n
, 1− δ)

=

(
1− δ

2
+

1

2n

)
log

1−δ
2 + 1

2n

1− δ
+

(
1− 1− δ

2
− 1

2n

)
log

1− 1−δ
2 − 1

2n

δ

= log

(
1 +

1−δ
2 − 1

2n

δ

)
+

(
1− δ

2
+

1

2n

)(
log

(
1−

1−δ
2 − 1

2n

1− δ

)
+ log

(
1−

1−δ
2 − 1

2n
1+δ
2 − 1

2n

))

≥
(
1− δ

2
− 1

2n

)(
1

1+δ
2 − 1

2n

−
(
1− δ

2
+

1

2n

)(
1

1−δ
2 + 1

2n

·

(
1−

1−δ
2 − 1

2n

2(1− δ)

)
+

1

δ

))

=

(
1− δ

2
− 1

2n

)(
1

1+δ
2 − 1

2n

− 3

4
− 1

4(1− δ)n
−

1−δ
2 + 1

2n

δ

)

= Ω

(
1− δ

2
− 1

2n

)
,

where the inequality follows from (a) & (b) of Fact 2.

Lemma 7 (Restate Lemma 3). For any x1, x2 . . . , xn ∈ [0, 1] with average a :=∑
i xi

n < b ∈ [0, 1], then
∑

i:xi<b d(xi, b) ≥ n · d(a, b).

Proof. Recall that d(·, y) is convex for any fixed y in Fact 1. Let S = { i : xi < b } and
k = |S|. By the convexity of d(·, b), we have 1

k

∑
i∈S d(xi, b) ≥ d

(∑
i∈S xi

k , b
)
. Since

d(x, b) > d(y, b) if x < y < b in Fact 1,∑
i∈S

d(xi, b) ≥ k · d
(∑

i∈S xi

k
, b

)
≥ k · d

(
an− (n− k)b

k
, b

)
.

Using the convexity of d(·, b) again, we get

k

n
· d
(
an− (n− k)b

k
, b

)
+

n− k

n
· d(b, b) ≥ d(a, b),

which implies k · d
(

an−(n−k)b
k , b

)
≥ n · d(a, b) since d(b, b) = 0.

Lemma 8 (Restate Lemma 4). For any 0 < a < b < 1, if b−a
a = Ω(1), then d(b, a) =

Ω
(
b · log b

a

)
.

Proof. By definition of the KL divergence, d(b, a) = b log b
a + (1− b) log 1−b

1−a .
By Fact 2 (b) & (c),

b log
b

a
= b log

(
1 +

b− a

a

)
≥ (b− a)

(
1 +

(b− a)/a

2 + (b− a)/a

)
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and

(1− b) log
1− b

1− a
= (1− b) log

(
1 +

a− b

1− a

)
≥ −(b− a)

(
1− b− a

2(1− a)

)
.

Therefore if r := b−a
a = Ω(1),

d(b, a) =

(
1− 1

1 + r/(2 + r)

)
b log

b

a
+

1

1 + r/(2 + r)
b log

b

a
+ (1− b) log

1− b

1− a

≥
(
1− 1

1 + r/(2 + r)

)
b log

b

a
+ (b− a)− (b− a)

(
1− b− a

2(1− a)

)
≥
(
1− 1

1 + r/(2 + r)

)
b log

b

a
.

C Details of the OSMD Algorithm Corresponding to

Proposition 1

For completeness, we provide a description of the OSMD algorithm used in Algo-

rithm 2. For more detailed information, please refer to the work of [21].

Let ∆(n−1) denote the probability simplex with n − 1 dimensions, defined as

∆(n−1) = {q ∈ R≥0 :
∑n

i=1 q(i) = 1 }. Here, q(i) represents the value at the i-th
position of vector q. Consider a function F : Rn → R ∪ {∞}. The Bregman diver-

gence with respect to F is defined as BF (q,p) = F (q) − F (p) − ⟨∇F (p),q − p⟩
for any q,p ∈ Rn

.

The algorithm proposed in [21] is designed for loss cases, where each pull results

in a loss associated with the corresponding arm instead of a reward. To adapt their

algorithm to our setting, we can perform a simple reduction by constructing the loss

of each arm ℓt(i) as 1−rt(i), where rt(i) is the reward of arm armi. It is straightforward

to verify that the results in [21] also hold for the reward setting. Let η be the learning

rate and F : R|S| → R ∪ {∞} be the potential function, where S is the arm set.

Without loss of generality, we index the arms in S by [|S|].

Algorithm 5 Online Stochastic Mirror Descent([21])

Input: a set of arms S and the number of rounds L

1: procedure MirrorDescent(S,L)
2: Q1 ← argminq∈∆(|S|−1)

F (q)
3: for t = 1, 2 . . . , L do

4: Sample arm at ∼ Qt, observe reward rt(at) and let ℓt(at) = 1− rt(At)
5: Compute reward estimator ℓ̂t as

ℓ̂t(i) = 1 [At = i]

(
ℓt(i)−

1

2
+

η

8

(
1 +

1

Qt(i) +
√

Qt(i)

))
− ηQt(At)

8
(
Qt(i) +

√
Qt(i)

)
6: Set Qt+1 = argminq∈∆(|S|−1)

⟨q, ℓ̂t⟩+ 1
η
·BF (q, Qt)
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By choosing η =
√

8
L and F (q) = −2

∑|S|
i=1

√
q(i), the conclusion in Proposi-

tion 1 can be directly derived from Theorem 11 in [21].

D Details of the MedianElimination Algorithm

Corresponding to Proposition 2

For completeness, we present the description of the MedianElimination algorithm

we used in Algorithm 1. For more detailed information, please refer to Theorem 10

of [9].

Algorithm 6 Median Elimination([9])

Input: a set of arms S of size n and (ε, δ)
Output: an arm

1: procedure MedianElimination(ε, δ, S)
2: Set S1 = S, ε1 = ε/4, δ1 = δ/2, ℓ = 1
3: while |S| > 1 do

4: Sample every arm a ∈ S for
4
ε2
ℓ
log 3

δℓ
times, and let p̂ℓa denote its empirical mean

5: Find the median of p̂ℓa, denoted bymℓ

6: Update: Sℓ+1 = Sℓ\
{
a : p̂ℓa < mℓ

}
7: Update: εℓ+1 = 3

4
εℓ, δℓ+1 = δℓ

2
, ℓ = ℓ+ 1
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