
Multi-Multiway Cut Problem on Graphs of
Bounded Branch Width

Xiaojie Deng, Bingkai Lin, and Chihao Zhang

Department of Computer Science, Shanghai Jiao Tong University

Email: {lvchaxj, kai314159, chihao.zhang}@gmail.com

Abstract. The Multi-Multiway Cut problem proposed by Avidor and
Langberg[2] is a natural generalization of Multicut and Multiway Cut
problems. That is, given a simple graphG and c sets of vertices S1, · · · , Sc,
the problem asks for a minimum set of edges whose removal discon-
nects every pair of vertices in Si for all 1 ≤ i ≤ c. In [13], the authors
asked whether the problem is polynomial time solvable for fixed c on
trees. In this paper, we give both a logical approach and a dynamic pro-
gramming approach to the Multi-Multiway Cut problem on graphs of
bounded branch width, which is exactly the class of graphs with bounded
treewidth. In fact, for fixed c and branch width k, we show that the Multi-
Multiway Cut problem can be solved in linear time, thus affirmatively
answer the question in [13].

1 Introduction

The Multi-Multiway Cut problem is defined as follows[2]:

Multi-Multiway Cut(G)
Input: A simple graph G = (V,E) ∈ G and c sets of vertices

S1, S2, . . . , Sc.
Problem: Find a set of edges C ⊆ E with minimum cardinality whose

removal disconnects every pair of vertices in each set Si

The well-studied Multiway Cut problem is a special case of Multi-Multiway Cut
when c = 1 and Multicut problem is a special case of Multi-Multiway Cut
when every Si contains exactly two vertices. Multiway Cut is NP-hard on
general graphs [7] and Multicut is NP-hard even on trees (by a simple reduc-
tion from vertex cover to stars). Based on these two hardness results, [13] asked
whether Multi-Multiway Cut is polynomial-time solvable on trees when c is
a constant.

In this paper, we show that when G is the class of graphs of branch width at
most k, Multi-Multiway Cut(G) can be solved in O(k2k+2 · 22kc · |G|). The
notion of branch width is equivalent to treewidth up to constant, which roughly
measures how similar a graph is to a tree. We will present two algorithms.

The first one is using logical approach based on Courcelle’s theorem, i.e., we will
give a monadic second order formula characterizing Multi-Multiway Cut and
Courcelle’s theorem directly implies a linear algorithm for fixed c and k. How-
ever, the canonical algorithm behind Courcelle’s theorem contains huge hidden
constant and thus it is impractical. Our second algorithm is based on dynamic
programming and can be viewed as a subtle way of applying Courcelle’s theorem
to specific problem, thus it is more efficient.

Related Work The Multicut problem is known to be APX-hard for c ≥ 3
[7]. An O(log c)-approximation algorithm based on the well-known region grow-
ing rounding technique was presented in [8]. From the parameterized complexity
point of view, various parameters have been studied like solution size [4], cardi-
nality k and solution size [14] [17], or treewidth of the input structure [9],[15].

The Multiway Cut problem is also known to be APX-hard for ` ≥ 3 [7],
where ` = |S1|. A (3/2 − 1/`)-approximation algorithm was presented in [5].
Later Karger et al. [12] improved the approximation ratio to (1.3438 − εm). In

terms of exact algorithms, [17] gave an algorithm in O(2(
`−2
`−1k)`T (n,m)) time,

where k is the solution size, T (n,m) = O(min(n2/3,m1/2)m), n is the number
of vertices and m is the number of edges in graph.

For Multi-Multiway Cut problem, Avidor and Langberg [2] presented an
O(log k)-approximation algorithm using the idea of region growing. [18] studied
some variant of Multi-Multiway Cut on trees including the prize-collecting
version.

In [13], Liu and Zhang gave a fixed-parameter tractable algorithm for Multi-Multiway Cut
on trees in which the parameter is the size of solution and c is constant.

Independently, Kanj et al. proved a similar results in [11].

Our Result We present two linear algorithms for Multi-Multiway Cut with
constant c and k, where k is the branch width of input graph. Our algorithms can
be further extended to graphs with weight on edges and directed graph whose
underlying undirected graph is of bounded branch width.

Organization of the Paper In Section 2, we introduce some necessary back-
ground and notations. In Section 3, we use Courcelle’s Theorem to give an algo-
rithm for Multi-Multiway Cut on graphs of bounded branch width. Next, in
Section 4, we present the dynamic programming algorithm and finally conclude
the paper in Secion 5.

2 Preliminaries

N denote the set of natural numbers. For a set S, the set of all k-element subsets
of S is [S]k. The power set of S is denoted by P(S) = {X|X ⊆ S}. |S| is the
cardinality of S.

2.1 Graph

A graph is a pair G = (V,E), where V is a finite set of vertices and E ⊆ V 2. The
size of G is |G| = |V |+ |E|. An edge {u, v} is also written as uv. We also denote
the edges set and vertices set of G as E(G) and V (G). A graph with labels is
G = (V,E, L1, L2, · · · , Ll), where each Li ⊆ V is a label set. The union of two
graph G and H is G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)).

2.2 Branch Decomposition

Definition 1 (Branch Decomposition). Given a graph G = (V,E), a branch
decomposition is a pair (T, β), such that

1 T is a binary tree with |E| leaves and every inner node of T has two children.

2 β is a mapping from V (T) to P(E) satisfying the following conditions:

2.1 For each leaf v ∈ V (T), there exists e ∈ E(G) with β(v) = {e}, and there
are no v, u ∈ V (T), v 6= u such that β(v) = β(u).

2.2 For every inner node v ∈ V (T) with children vl, vr, β(v) = β(vl)∪β(vr);

Definition 2 (Boundary). Given a graph G = (V,E), for every set F ⊆ E,
the boundary ∂F = {v | v is incident to edges in F and E \ F}.

Definition 3 (Width of a Branch Decomposition). Given a branch decom-
position (T, β) of G = (V,E), the width of this decomposition is max{|∂β(v)| |
v ∈ V (T)}.

The branch width bw(G) of G is defined as the minimum width of all branch
decompositions (T, β) for G.

Proposition 1. [3] For any fixed k, there is a linear time algorithm that checks
if a graph has branch width k and, if so, outputs a branch decomposition of
minimum width.

Branch width is related to another well-known graph parameter, treewidth. In-
deed, they are equivalent up to constant. Let tw(G) be the treewidth of graph
G, then

Proposition 2. [16] bw(G) ≤ tw(G) + 1 ≤ max{ 32 · bw(G), 2}.

Definition 4. Given a branch decomposition (T, β) of G = (V,E), for any t ∈
V (T), let Vt = {v | ∃u ∈ V (G), vu ∈ β(t)}, the subgraph Gt is

Gt = (Vt, β(t))

.

Fig. 1. A graph with a branch decomposition of width 3.

2.3 Logic

We use FO and MSO to denote First Order Logic and Monadic Second Order
Logic respectively. The difference between these two logic is that FO only allows
quantification over individual variables while MSO allows quantification over set
variables. Furthermore, MSO can be extended to MSO2. In this paper, MSO2 is
the logic that allows quantification over subset of edges in graph.

3 Logical Approach

We consider a Multi-Multiway Cut instance (G,S1, · · · , Sc) whereG = (V,E)
is a simple graph of branch width k. Many NP-hard problems on graphs have ef-
ficient solutions when the input graphs have bounded treewidth by the following
theorem:

Theorem 1 (Courcelle’s Theorem, Optimization Version). [6,1] Given
an MSO formula φ(U), there is an algorithm A satisfies that for any labeled graph
G = (V,E,L1, · · · , Ll) of treewidth k, A computes the set U ⊆ V with minimum
cardinality, such that G � φ(U), with running time bounded by f(k, |φ(U)|)|G|
for some computable function f .

By Proposition 2, the branch width of a graph is equivalent to its treewidth
up to some constant. Therefore Theorem 1 holds for graph with bounded branch

width. Furthermore, the optimization version of Courcelle’s Theorem for MSO
can be extend to MSO2 formula by turning the original graph G into a labeled
graph I(G) = (VI , EI , LV , LE), where VI = V (G) ∪ E(G), LV = V (G), LE =
E(G) and EI = {{v, e} | v ∈ e}. Any MSO2 formula about the original graph
G can be translated into an MSO formula about I(G). Since the graph I(G) is
also of bounded branch width, we have an optimization version of Courcelle’s
theorem for MSO2. Readers can refer [10] for more detail.

Thus it is sufficient to write down an MSO2 formula capturing Multi-Multiway Cut.
We begin with a MSO2 formula saying two vertices x, y are connected without
edges in C:

conn(x, y, C) = ∀X[X(x) ∧ (∀u∀vX(u) ∧ E(u, v) ∧ ¬C(u, v)→ X(v))→ X(y)]

The Multi-Multiway Cut problem can be captured by an MSO2 formula

mmcut(C) =

c∧
i=1

∀x∀y(Si(x) ∧ Si(y)→ ¬conn(x, y, C))

Therefore for all C ⊆ E(G), G � mmcut(C)⇔ C is a multi-multiway cut of (G,S1, · · · , Sc),
thus we can solve Multi-Multiway Cut on bounded branch width graph via
Courcelle’s Theorem in time f(k, c) · |G| for some computable function f .

4 Dynamic Programming Approach

Let (G,S1, . . . , Sc) be an instance of Multi-Multiway Cut and (T, β) be a
branch decomposition of G of width k. It is convenient to view each i ∈ [c] as
a color, i.e., v ∈ Si means v is assigned color i. Note that a vertex v may be
assigned with multiple colors (or no color) since we do not require Si ∩ Sj = ∅
for i 6= j. We use col(v) to denote the set of colors v assigned. Thus a multi-
multiway cut is an edge set whose removal disconnects all pairs of vertices with
common color.

In fact, we will compute a table C(t, Z) for every t ∈ V (T) and Z. Here
Z = {(Xi, Yi) | i ∈ I} for some index set I. {Xi | i ∈ I} is a partition of ∂β(t)
and each Yi is a set of colors. We say a set of edges C ⊆ β(t) is consistent with
Z if and only if

(1) C is a multi-multiway cut of Gt.
(2) Let H = (Vt, β(t) \ C), i.e., the subgraph of Gt after removing C. Let {Pi |

i ∈ I} be the family of connected components in H such that Pi∩∂β(t) 6= ∅
for all i ∈ I. Then Xi = Pi ∩ ∂β(t) and Yi =

⋃
v∈Pi

col(v) for all i ∈ I.

It is easy to see that, for every multi-multiway cut C of Gt, there is only one
consistent Z. Intuitively, Z encodes colors exposed to external when removing
C from Gt.

The value of C(t, Z) is a minimum edge set C ⊆ β(t) that is consistent with
Z, if there are more than one C consistent with Z with minimum cardinality,

then C(t, Z) is arbitrary one of them. If no such C exists, then the value of
C(t, Z) is “Impossible”. Indeed, then minimum multi-multiway cut of G is the
one in {C(r, Z) | all possible Z} with minimum cardinality, where r is the root
of T .

In the following, we will show how to compute C(t, Z) recursively.

4.1 Computing C(t, Z)

If t is a leaf in T , the computation of C(t, Z) is easy, otherwise let t` and tr be
its two children in T . C(t, Z) is computed from some C(t`, Z`) and C(tr, Zr).
We will use the following algorithm as a subroutine:

Merge Two Cuts

Input: (C`, Z`) and (Cr, Zr), where Z`(resp. Zr) is consistent with
C`(resp. Cr)

Output: If C` ∪ Cr is a multi-multiway cut of Gt, compute the set Z
consistent with C`∪Cr on Gt, otherwise return “Not Mergeable”

1 Let Z` = {(Xi, Yi) | i ∈ I}, Zr = {(Xj , Yj) | j ∈ J} where I and J are two index
sets.

2 Construct a bipartite graph B = (I, J, E), for every i ∈ I and j ∈ J , ij ∈ E if
and only if Xi ∩Xj 6= ∅.

3 Let {Ps | s ∈ S} be family of connected components in B where S is an index
set.

4 For every s ∈ S and p, q ∈ Ps, if Yp ∩ Yq 6=
⋃

v∈Xp∩Xq
col(v), return “Not

Mergeable”.
5 For s ∈ S:

5.1 Let Xs =
(⋃

p∈Ps
Xp

)
∩ β(t)

5.2 Let Ys =
(⋃

p∈Ps
Yp

)
6 return Z = {(Xs, Ys) | s ∈ S and Xs 6= ∅}.

Algorithm 1: Merge Two Cuts

Step 4 in Algorithm 1 checks whether there are two vertices sharing some
common color being connected after merging. If it is the case, the algorithm
outputs “Not Mergeable”, which means C` ∪ Cr is not a multi-multiway cut of
G. The size of bipartite graph B is O(k2) and all other operations are linear to
the size of B, so this algorithm is in O(k2).

Fig 2 shows an example where Xu1 ∩ Xv1 = {1}, Xu3 ∩ Xv2 = {2} and
Xu3
∩Xv4 = {3}; with the corresponding color sets Yu1

= {white, black}, Yu3
=

{white, black, gray}, Yv1 = {black, gray} and Yv2
= {white, black, gray}. Apply-

ing Algorithm 1 to this example, in the Step 4 of Algorithm 1, we can find u3, v2

in the same component of the bipartite graph, and Yu3
∩ Yv2 = {gray, white},

while
⋃

v∈Xu3
∩Xv2

col(v) = {gray}. The algorithm will return “Not Mergeable”,

since there are two vertices with the common color white being connected after
merging.

Fig. 2. Merge Two Pairs

To ease the presentation, we define a binary operation ⊕:

Definition 5. Z` ⊕ Zr = Z if and only if Algorithm 1 output Z on inputs Z`

and Zr.

Compute C(t, Z)

Input: (G,S1, · · · , Sc) along with a branch decomposition (T, β) of
width k

Output: Compute the table C(t, Z)

1 If t is a leaf in T . Let uv be the unique edge in β(t). There are two cases:
(1.1) Z = {(X1, Y1)} where X1 = {u, v}. In this case C(t, Z) = ∅ if col(u) ∩

col(v) = ∅ and Y1 = col(u) ∪ col(v). Otherwise, C(t, Z) =“Impossible”;
(1.2) Z = {(X1, Y1), (X2, Y2)} where X1 = {u} and X2 = {v}. In

this case C(t, Z) = {uv} if Y1 = col(u), Y2 = col(v). Otherwise,
C(t, Z) =“Impossible”.

2 If t is not a leaf in T , let t` and tr be its two children.

C(t, Z) = arg min
|C|
{C | C = C(t`, Z`) ∪ C(tr, Zr) and Z = Z` ⊕ Zr}

Algorithm 2: Compute C(t, Z)

We can now compute C(t, Z) as follows: C(t, Z) is the minimum edge set C ⊆
β(t) such that C = C(t`, Z`)∪C(tr, Zr) for some Z`, Zr satisfying Z`⊕Zr = Z.
We enumerate all such Z` and Zr to compute C(t, Z). Note that if one side of
the union is “Impossible”, then the result is also “Impossible”. In summary, we
use Algorithm 2 to compute C(t, Z).

Putting all together, we have:

Theorem 2. Given a Multi-Multiway Cut instance (G,S1, · · · , Sc) along
with a branch decomposition (T, β) of width k, the minimum multi-multiway cut
can be computed in time O(k2k+2 · 22kc · |G|).

Proof. First note that, for a fixed k, the number of distinct Z is at most kk2ck.
This is because

(1) |β(t)| ≤ k and the number of partitions of a k-size set is upper bounded by
kk, and

(2) There are at most 2c distinct sets of colors and each Yi is one of them.

In Algorithm 2, C(t, Z) is computed in a bottom-up style: once we know all
C(t`, Z`) and C(tr, Zr), we can enumerate all of them to compute the corre-
sponding C(t, Z). We need to deal with at most (kk2ck)2 pairs of Z` and Zr and
for each pair, we use Algorithm 1 to compute their merging results, and then
take the minimum C(t, Z) for each Z. After computing the table C(t, Z), we
choose the cut in {C(r, Z) | all possible Z} with minimum cardinality as the
final answer, where r is the root of T . In all, we use O(k2k+2 ·22kc · |G|) time. ut

4.2 Proof of the Correctness

The correctness of Algorithm 1

Lemma 1. If C` is a multi-multiway cut consistent with Z` on Gt` , Cr is a
multi-multiway cut consistent with Zr on Gtr and Z`⊕Zr = Z, then C := C`∪Cr

is a multi-multiway cut consistent with Z on Gt.

Proof. Assume Z = {(Xk, Yk) | k ∈ K} for index set K.
First, we need to show that if Z` ⊕ Zr = Z, then C is a multi-multiway cut

of Gt. That is, there are no two vertices with common color connected in Gt after
removing C. Let Pt = {Ps | s ∈ S} be the family of connected components in
Gt after removing C, P` = {Pi | i ∈ I} (resp. Pr = {Pj | j ∈ J}) be the set of
connected components in Gt` (resp. Gtr) after removing C` (resp. Cr). It follows
from the definition of branch decomposition that

Ps =
⋃
i∈I′

Pi ∪
⋃
j∈J′

Pj

for some index sets I ′ ⊆ I and J ′ ⊆ J .
Thus if Ps contains two vertices with common color, Step 4 of Algorithm 1

will return “Not Mergeable”, but this is impossible since Z` ⊕ Zr = Z means
Algorithm 1 outputs Z on inputs Z`, Zr.

It remains to verify {Xk | k ∈ K} is exactly {Ps ∩ ∂β(t) | s ∈ S and Ps ∩
∂β(t) 6= ∅} and Yk is the set of colors appeared in the component containing
Xk.

Let Ps be a component in Pt such that Ps ∩ ∂β(t) 6= ∅. It follows from the
definition of branch decomposition that

Ps =
⋃
i∈I′

Pi ∪
⋃
j∈J′

Pj

for some index sets I ′ ⊆ I and J ′ ⊆ J .
Then I ′ ∪ J ′ is a connected component in the bipartite graph B constructed

in Step 2. The corresponding Xk :=
(⋃

s∈I′∪J′ Xs

)
∩ β(t). It is easy to verify

that the correspondence is a bijection between two sets.
The consistency of {Yk | k ∈ K} follows from Step 5.2 of Algorithm 1 and

consistency of {Xk | k ∈ K} directly. ut

Now we prove the correctness of the Algorithm 2.

Lemma 2. C(t, Z) computed in Algorithm 2 is the minimum cut that consistent
with Z on Gt.

Proof. We apply induction on the branch decomposition tree.
If t is leaf, the correctness is obvious. Otherwise, t has two children t` and tr in

T . Suppose C is the minimum cut that consistent with Z on Gt, Let C` = C∩β(t`)
and Cr = C∩β(tr). There is only one Z` (resp. Zr) that C` (resp. Zr) is consistent
with. Since C = C` ∪ Cr, we have Zr ⊕ Z` = Z by the Algorithm 1.

Let C ′
` = C(t`, Z`), we have |C ′

`| ≤ |C`| by the induction; similarly let C ′
r =

C(tr, Zr), we have |C ′
r| ≤ |Cr|. Thus C ′

` ∪ C ′
r is a cut consistent with Z` ⊕ Zr.

On the other hand, C` ∪ Cr is also a cut consistent with Z` ⊕ Zr. We have
|C ′

` ∪ C ′
r| ≤ |C` ∪ Cr| = |C| ≤ |C ′

` ∪ C ′
r|. According to our algorithm, C(t, Z)

is a cut of minimum cardinality over all C(t`, Z`) ∪ C(tr, Zr) for Z` ⊕ Zr = Z,
therefore |C(t, Z)| = |C|. ut

5 Conclusion

In this paper, we presented two linear algorithms for Multi-Multiway Cut
problem with constant number of terminal sets on graphs of bounded branch
width. The logical approach is straightforward and very easy to design, however,
it relies on a canonical algorithm and thus not practical. Our second approach is
somehow a refinement of the canonical algorithm to specific problem, the more
subtle design of subproblem gains much efficiency.

6 Acknowledgements

The work is supported by NSF of China (61033002) and by Science and Tech-
nology Commission of Shanghai Municipality (11XD1402800).

References

1. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991.

2. A. Avidor and M. Langberg. The multi-multiway cut problem. Theoretical Com-
puter Science, 377(1-3):35–42, 2007.

3. Hans L Bodlaender and Dimitrios M Thilikos. Constructive linear time algo-
rithms for branchwidth. In Automata, Languages and Programming, pages 627–
637. Springer, 1997.

4. Nicolas Bousquet, Jean Daligault, Stephan Thomassé, Anders Yeo, et al. A polyno-
mial kernel for multicut in trees. In 26th International Symposium on Theoretical
Aspects of Computer Science STACS 2009, pages 183–194, 2009.

5. Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation
algorithm for multiway cut. In Proceedings of the thirtieth annual ACM symposium
on theory of computing, pages 48–52. ACM, 1998.

6. Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 193–242. Elsevier and MIT Press, 1990.

7. Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour,
and Mihalis Yannakakis. The complexity of multiterminal cuts. SIAM Journal on
Computing, 23(4):864–894, 1994.

8. Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow
min-(multi) cut theorems and their applications. SIAM Journal on Computing,
25(2):235–251, 1996.

9. Georg Gottlob and Stephanie Tien Lee. A logical approach to multicut problems.
Information Processing Letters, 103(4):136–141, 2007.

10. Martin Grohe. Logic, graphs, and algorithms. Logic and Automata–History and
Perspectives, pages 357–422, 2007.

11. Iyad Kanj, Guohui Lin, Tian Liu, Weitian Tong, Ge Xia, Jinhui Xu, Boting Yang,
Fenghui Zhang, Peng Zhang, and Binhai Zhu. Algorithms for cut problems on
trees. Manuscript, 2013.

12. David R Karger, Philip Klein, Cliff Stein, Mikkel Thorup, and Neal E Young.
Rounding algorithms for a geometric embedding of minimum multiway cut. Math-
ematics of Operations Research, 29(3):436–461, 2004.

13. Hong Liu and Peng Zhang. On the generalized multiway cut in trees problem.
Journal of Combinatorial Optimization, pages 1–13, 2012.

14. Dániel Marx. Parameterized graph separation problems. Theoretical Computer
Science, 351(3):394–406, 2006.

15. Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Multicut algorithms via
tree decompositions. In Algorithms and Complexity, pages 167–179. Springer, 2010.

16. Neil Robertson and Paul D Seymour. Graph minors. x. obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

17. Mingyu Xiao. Simple and improved parameterized algorithms for multiterminal
cuts. Theory of Computing Systems, 46(4):723–736, 2010.

18. P. Zhang. Approximating generalized multicut on trees. Computation and Logic
in the Real World, pages 799–808, 2007.

	Multi-Multiway Cut Problem on Graphs of Bounded Branch Width

