
ADVANCED ALGORITHMS (V)

CHIHAO ZHANG

1. Basics Spectral Tools

Today we start to introduce spectral algorithms. The theory uses eigenvalues and eigenvectors of adjacency ma-
trices to study combinatorial proeprties of graphs.

Recall that we have the spectral decomposition theorem, which is the main tool we are going to use today.

Theorem 1 (Spectral Decomposition Theorem). An n × n symmetric matrix A has n real eigenvalues λ1, . . . , λn with
corresponding eigenvectors v1, . . . , vn which are orthonomal. Moreover, it holds that

A = VΛVT ,

where V =
[
v1 v2 . . . vn

]
and Λ = diag(λ1, . . . , λn).

Given a graph G = (V ,E) with V = {v1,v2, . . . ,vn}, the basic object we study is its adjacency matrix A =
(ai, j)1≤i, j≤n . To ease the notation, we shift A to a positive semi-definite matrix. Let

L = D −A

be the Laplacian of G where D = diag (deg(v1), deg(v2), . . . , deg(vn)).

Proposition 2. For very x ∈ Rn , it holds that

xTLx =
∑

{i, j }∈E
(x(i) − x(j))2 .

Proof. Direct calculation shows that both sides are equal to
∑

i ∈V deg(i) · x(i)2 − 2
∑

{i, j }∈E x(i)x(j). □

Therefore, L ⪰ 0 and all of its eigenvalues are nonnegative.
Sometimes it is more convenient to work with normalized Laplacian, which is defined to be

N ≜ D− 1
2LD− 1

2 = I − D− 1
2AD− 1

2 .

When G is d-regular, we have N = I − 1
dA.

The Rayleigh Quotient of a vector x ∈ Rn with respect to a matrixM is

RM (x) =
⟨x,Mx⟩
⟨x,x⟩ .

Note that for the normalizaed Laplacian N of some graph, it holds that

(1) RN (x) =
⟨x, (D− 1

2LD− 1
2 )x⟩

⟨x,x⟩ =
⟨D− 1

2 x,LD− 1
2 x⟩

⟨D− 1
2 x,DD− 1

2 x⟩
=

⟨y,Ly⟩
⟨y,Dy⟩ ,

where y ≜ D− 1
2 x.

The following variational characterization of the eigenvalues is our center tool in the development of the theory.

Theorem 3. LetM ba a symmetrix matrix with real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn .Then for every k = 1, . . . ,n,

λk = min
k -dim subspace X ⊆Rn

max
x∈X \{0}

RM (x).

Proof. Let v1, . . . , vn be a set of orthonormal eigenvectors corresponding to λ1, . . . , λn respectively.
We first prove

min
k -dim subspace X ⊆Rn

max
x∈X \{0}

RM (x) ≤ λk .
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To this end, we only need to construct a k-dimensional space X such that every nonzero vector x ∈ X \ {0} satisfies
RM (x) ≤ λk . Let X = span(v1, v2, . . . , vk ), then for every x =

∑k
i=1 aivi ∈ X \ {0}, we have

RM (x) =
⟨∑k

i=1 aivi ,M
(∑k

i=1 aivi
)
⟩

⟨∑k
i=1 aivi ,

∑k
i=1 aivi ⟩

=
⟨∑k

i=1 aivi ,
∑k

i=1 λiaivi ⟩
⟨∑k

i=1 aivi ,
∑k

i=1 aivi ⟩
=

∑k
i=1 λia

2
i∑k

i=1 a
2
i

≤ λk .

We then prove the other direction, i.e.,
min

k -dim subspace X ⊆Rn
max

x∈X \{0}
RM (x) ≥ λk .

It is sufficient to show that, for every k-dimensional subspace X ⊆ RN , there exists some x ∈ X \ {0} satisfying
Rx (x) ≥ λk . Let us fix such a k-dimensional subspace, and let x be an arbitrary nonzero vector in

X ∩ span(vk , . . . , vn).
Such a vector x must exist since the sum of the dimensions of the two spaces is n + 1. Assuming x =

∑n
i=k bivi ,

then

RM (x) =
⟨∑n

i=k bivi ,M
(∑n

i=k bivi
)
⟩

⟨∑n
i=k bivi ,

∑n
i=k bivi ⟩

=
⟨∑n

i=k bivi ,
∑n

i=k λibivi ⟩
⟨∑n

i=k bivi ,
∑n

i=k bivi ⟩
=

∑n
i=k λib

2
i∑n

i=k b
2
i

≥ λk .

□

An immediate corollary of above is

Corollary 4.
λ1 = min

x∈Rn\{0}
RM (x), λn = max

x∈Rn\{0}
RM (x).

Besides, we can similarly use the spectral decomposition of vectors to prove another useful characterization of
eigenvectors:

Theorem 5. Let v1, . . . , vn be a set of orthonormal (with respect to ⟨·, ·⟩) eigenvectors corresponding to λ1, . . . , λn
respectively. Then for every k = 1, . . . ,n,

λk = min
x⊥span(v1, ...,vk−1)

RM (x).

The following proposition sheds some light on the relation between eigenvalues and the structure of the graph.

Proposition 6. LetG = (V ,E) be an undirected graph and N be its normalized Laplacian. Assuming λ1 ≤ λ2 ≤ · · · ≤
λn are its eigenvalues, then

(1) λ1 = 0;
(2) λn ≤ 2 and λn = 2 if and only if one of components of G is bipartite;
(3) λk = 0 if and only if G has at least k components.

Proof. It follows from (1) and Corollary (4) that

λ1 = min
x,0

RN (x) = min
y,0

⟨y,Ly⟩
⟨y,Dy⟩ = min

y,0

∑
{i, j }∈E (yi − yj)

2∑
i ∈V deg(i) · y2i

≥ 0,

where the second equality is because the mapping x → D− 1
2 x =: y is linear and bijective. The equality is achieved

when y = 1. This proves (1).
Similarly, we have

λn = max
x,0

RN (x) = max
y,0

⟨y,Ly⟩
⟨y,Dy⟩ = 2 −min

y,0

∑
{i, j }∈E (yi + yj)

2∑
i ∈V deg(i) · y2i

≤ 2.

To achieve the equality, we need yi = −yj whenever {i, j} ∈ E. It is not hard to verify that, such a nonzero y exists
if and only if one of components of G is bipartite.

To show (3), we use

λk = min
k -dim subspace X ⊆Rn

max
x∈X

RN (x) = min
k -dim subspace Y ⊆Rn

max
y∈Y

∑
{i, j }∈E (yi − yj)

2∑
i ∈V deg(i) · y2i

.
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First assume λk = 0, then we know for some k-dim subspaceY , every vector y ∈ Y satisfiesyi = yj whenever {i, j} ∈
E. This implies that for every y ∈ Y , yi = yj whenever i and j are in the same component. Let C denote the set of

components and for everyC ∈ C, we use 1C to denote the vector such that 1C (i) =
{
1, i ∈ C;

0, i < C
. Then span({1C }C ∈C)

must contain the whole space Y and therefore |C| ≥ k . Conversely, if |C| ≥ k , the space span({1C }C ∈C) witnesses
λk = 0. □

2. Edge Expansion and Cheeger’s Ineqality

We want to obtain some quantitative version of Proposition 6. To this end, we introduce the notion of edge
expansion to measure the connectivity of a graph.

Let G = (V ,E) be a graph, for every S ⊆ V , we define

φ(S) =

��E(S, S̄)��∑
i ∈S deg(i)

,

where E(S, S̄) is the set of edges crossing S and S̄ . In the following, we assume the graph is d-regular, then φ(S)

becomes to E(S, S̄)
d |S | . It is clear that the quantity is in fact the fraction of edges going out of S among those edges

incident to S . The (edge) expansion of the graph G is the minimum of φ(S), over all S ⊆ V with |S | ≤ V
2 :

φ(G) ≜ min
S ⊆V , |S | ≤ V

2

φ(S).

The edge expansion is an important object that appears in many areas of computer science. For example, we will
show in later lectures that it is closely related to the randomwalk on the graph. Today, wewill introduce an imporatnt
result that relating φ(G) with eigenvalues of the normalized Laplacian.

Theorem 7 (Cheeger’s Inequality). Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the normalized Laplacian of G,
then

λ2
2

≤ φ(G) ≤
√
2λ2.
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