Advanced Algorithms (XIII)

Shanghai Jiao Tong University

Chihao Zhang

June 1, 2020

Total Variation Distance

Let μ and ν be two distributions on Ω

Their total variation distance is

$$
d_{\mathrm{TV}}(\mu, \nu)=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|=\max _{A \subseteq \Omega} \mu(A)-\nu(A)
$$

$$
\ell_{1} \text {-distance scaled by } \frac{1}{2}
$$

Coupling

Let μ and ν be two distributions on Ω

A coupling of μ and ν is a joint distribution ω on $\Omega \times \Omega$ such that:

$$
\begin{aligned}
& \forall x \in \Omega, \quad \mu(x)=\sum_{y \in \Omega} \omega(x, y) \\
& \forall y \in \Omega, \quad \nu(x)=\sum_{x \in \Omega} \omega(x, y)
\end{aligned}
$$

Coupling Lemma

Let ω be a coupling of μ and ν

$$
(X, Y) \sim \omega \Longrightarrow X \sim \mu \text { and } Y \sim \nu
$$

Then

$$
\underset{(X, Y) \sim \omega}{\operatorname{Pr}}[X \neq Y] \geq d_{\mathrm{TV}}(\mu, \nu)
$$

Moreover, there exists ω^{*} such that

$$
\underset{(X, Y) \sim \omega^{*}}{\operatorname{Pr}}[X \neq Y]=d_{T V}(\mu, \nu)
$$

Proof of Coupling Lemma

For finite Ω, designing a coupling is equivalent to filling a $\Omega \times \Omega$ matrix so that the marginals are correct

$$
\Omega=\{1,2\}, \mu=(1 / 2,1 / 2), \nu=(1 / 3,2 / 3)
$$

ω^{*} is the one maximizing the sum of diagonals

Coupling of Markov Chains

Consider two copies of the chain P :

- The initial distribution is μ_{0} and ν_{0}

$$
\text { - } \mu_{t}^{T}=\mu_{0}^{T} P^{t} \text { and } \nu_{t}^{T}=\nu_{0}^{T} P^{t}
$$

A coupling of the two chains is joint distribution ω of $\left\{\mu_{t}\right\}_{t \geq 0}$ and $\left\{\nu_{t}\right\}_{t \geq 0}$ satisfying the following conditions
$\left\{\left(X_{t}, Y_{t}\right)\right\}_{t \geq 0} \sim \omega$ is a pair of processes such that

$$
\begin{aligned}
& \forall a, b \in \Omega, \operatorname{Pr}\left[X_{t+1}=b \mid X_{t}=a\right]=P(a, b) \\
& \forall a, b \in \Omega, \operatorname{Pr}\left[Y_{t+1}=b \mid X_{t}=a\right]=P(a, b)
\end{aligned}
$$

Marginally, $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are both chain P

$$
\forall t \geq 0, X_{t}=Y_{t} \Longrightarrow X_{t^{\prime}}=Y_{t^{\prime}} \text { for all } t^{\prime}>t
$$

Two chains coalesce once they meet

Fundamental Theorem via Coupling

If a finite chain P is irreducible and aperiodic, then it has a unique stationary distribution π. Moreover, for any initial distribution μ, it holds that

$$
\lim _{t \rightarrow \infty} \mu^{T} P^{t}=\pi^{T}
$$

Consider two chains $\left\{X_{t}\right\}_{t \geq 0}$ and $\left\{Y_{t}\right\}_{t \geq 0}$

- $X_{0} \sim \pi, Y_{0} \sim \mu_{0}$ for arbitrary μ_{0}
- A coupling where X_{t} and Y_{t} run independently

irreducible + aperiodic $\Longrightarrow \exists t, \forall x, y, P^{t}(x, y)>0$

Then for any $z \in \Omega$, there exists some $\theta>0$ s.t.

$$
\begin{aligned}
\operatorname{Pr}\left[X_{t}=Y_{t}\right] & \geq \operatorname{Pr}\left[X_{t}=Y_{t}=z\right]=\operatorname{Pr}\left[X_{t}=z\right] \cdot \operatorname{Pr}\left[Y_{t}=z\right] \\
& =\pi(z) \cdot P^{t}\left(Y_{0}, z\right) \geq \theta>0
\end{aligned}
$$

$\operatorname{Pr}\left[X_{t} \neq Y_{t}\right] \leq 1-\theta<1$
$\operatorname{Pr}\left[X_{2 t} \neq Y_{2 t}\right]=\operatorname{Pr}\left[X_{2 t} \neq Y_{2 t} \wedge X_{t}=Y_{t}\right]+\operatorname{Pr}\left[X_{2 t} \neq Y_{2 t} \wedge X_{t} \neq Y_{t}\right]$

$$
\begin{aligned}
& =\operatorname{Pr}\left[X_{2 t} \neq Y_{2 t} \mid X_{t} \neq Y_{t}\right] \cdot \operatorname{Pr}\left[X_{t} \neq Y_{t}\right] \\
& \leq(1-\theta)^{2}
\end{aligned}
$$

$\operatorname{Pr}\left[X_{k t} \neq Y_{k t}\right] \leq(1-\theta)^{k}$

$\lim \operatorname{Pr}\left[X_{n} \neq Y_{n}\right]=0$
 $n \rightarrow \infty$

Mixing Time

The mixing time $\tau_{\text {mix }}(\varepsilon)$ is the the first time t such that the total variation distance between X_{t} and π is at most ε, for any initial X_{0}

$$
\begin{aligned}
& \tau_{\text {mix }}(\varepsilon)=\max _{\mu_{0}} \min _{t \geq 0} d_{\mathrm{TV}}\left(\mu_{0}^{T} P^{t}, \pi\right) \leq \varepsilon \\
& \tau_{\text {mix }}=\tau_{\text {mix }}(1 / 4)
\end{aligned}
$$

Random Walk on Hyper Cube

- $V=\{0,1\}^{n}$
- $x \sim y$ iff $\|x-y\|_{1}=1$

Lazy walk on G

Standing at $x \in\{0,1\}^{n}$

- with prob. $\frac{1}{2}$, do nothing
- otherwise, choose $i \in[n]$ u.a.r and flip $x(i)$

The chain is equivalent to

- choose $i \in[n]$ and $b \in\{0,1\}$ u.a.r.
- change $x(i) \leftarrow b$

Let X_{t} and Y_{t} be two walks

We couple them by choosing the same i and b

What is the probability that $X_{t} \neq Y_{t}$?

Coupon Collector!

If $t \geq n \log n+c n$, then $\operatorname{Pr}\left[X_{t} \neq Y_{t}\right] \leq e^{-c}$

Coupling lemma implies that

$$
\tau_{\mathrm{mix}}(\varepsilon) \leq n \log n+n \log \varepsilon^{-1}
$$

Another Random Walk

Lazy walk on G

Standing at $x \in\{0,1\}^{n}$

- with prob. $\frac{1}{n+1}$, do nothing
- otherwise, choose $i \in[n]$ u.a.r and flip $x(i)$

A coupling argument implies $\tau_{\text {mix }} \leq \frac{1}{2} n \log n+O(n)$

Reversible Chain

Recall that we say a Markov chain P is reversible with respect to π if

$$
\forall x, y \in \Omega, \quad \pi(x) P(x, y)=\pi(y) P(y, x)
$$

Then π is a stationary distribution of P

We showed that spectral decomposition is a powerful tool to analyze reversible chains

Relaxation Time

$$
P=\sum_{i=1}^{n} \lambda_{i} v_{i} V_{i}^{T} D_{n}
$$

$$
P^{t}=\sum_{i=1}^{n} i_{i}^{\lambda_{i} v_{i} v_{i}^{T} D_{\pi}}
$$

$$
\text { - } \lambda_{n}=1
$$

$$
\lambda_{\star}:=\max _{1 \leq i \leq n-1}\left|\lambda_{i}\right|
$$

If P is reducible $\left(\lambda_{n-1}<1\right)$ and aperiodic $\left(\lambda_{1}>-1\right)$
$\lim _{t \rightarrow \infty} P^{t}=\mathbf{1 1}^{T} D_{\pi}=\left[\begin{array}{c}\pi^{\tau} \\ \pi^{T} \\ \vdots \\ \pi^{\tau}\end{array}\right]$

$$
\tau_{\mathrm{rel}}:=\frac{1}{1-\lambda_{\star}}
$$

For reversible, irreducible, aperiodic chains:

$$
\left(\tau_{\text {rel }}-1\right) \log \left(\frac{1}{2 \varepsilon}\right) \leq \tau_{\text {mix }}(\varepsilon) \leq \tau_{\text {rel }} \log \left(\frac{1}{\varepsilon \pi_{\text {min }}}\right)^{\pi_{\text {min }}:=\min _{x} \pi(x)}
$$

