
Advanced Algorithms (VII)

Shanghai Jiao Tong University

Chihao Zhang

April 20, 2020

The Probabilistic Method

In the class of Combinatorics, you already learnt the
probabilistic method

This is an important technique to prove the existence
of some object.

Sometimes, it is also useful to “find the object”

Max Cut

Given an undirected graph , the max cut
of is the partition such that
is maximized

G = (V, E)
G V = S ∪ S̄ |E(S, S̄) |

edge between and S S̄

It is NP-hard to determine the max cut exactly

On the other hand, each graph contains a cut of size at

least
|E |
2

We find a partition by tossing a fair coin at
each vertex

(S, S̄)
v

If the coin gives HEAD, we put in otherwise,
put in

v S,
v S̄

We can compute

E[|E(S, S̄) |] = ∑
e∈E

Pr[e is in the cut] =
|E |
2

.

So there exists a cut of size at least
|E |
2

Can we turn the existence proof into an algorithm?

The following straightforward strategy turns the
argument into a Las-Vegas algorithms

“Repeat tossing coins until ”|E(S, S̄) | ≥
|E |
2

We know , so what is the

expected running time of the algorithm?

E[|E(S, S̄) |] =
|E |
2

Let be the probability that our algorithm terminates
in one round

p

Namely where .

Then

p = Pr [|E(S, S̄) | ≥
m
2] m = |E |

m
2

= E[|E(S, S̄) |] =
m

∑
i=0

i ⋅ Pr[|E(S, S̄) | = i]

≤ (m
2

− 1)(1 − p) + pm

So p ≥
2

m + 2

So we obtained a polynomial-time randomized

approximation algorithm with approximation ratio
1
2

Approximation Ratio of an algorithm A

for maximization problem:

α(A) = min
G

A(G)
OPT(G)

for minimization problem:

α(A) = max
G

A(G)
OPT(G)

Derandomization
Our algorithm can be de-randomized using the
method of conditional expectation

Fix an order of vertices {v1, v2, …, vn}

Let the coins be X1, X2, …, Xn

We will decompose using conditional
expectation

E[|E(S, S̄) |]

E[|E(S, S̄) |] = E[E[|E(S, S̄) | |X1, X2, …, Xn]]

=
1
2

⋅ E[E[|E(S, S̄) | ∣ X1 = 0, X2, …, Xn]]

+
1
2

⋅ E[E[|E(S, S̄) | ∣ X1 = 1, X2, …, Xn]]

=
1
2

⋅ E[|E(S, S̄) | ∣ X1 = 0]] +
1
2

⋅ E[|E(S, S̄) | ∣ X1 = 1]]

E0

| |

E1

| |

So we know at least one of and holds E0 ≥
m
2

E1 ≥
m
2

Moreover, both and can be efficiently computedE0 E1

We can set or according to which of
and is bigger

X1 = 0 X1 = 1 E0
E1

The argument can proceed until is revealed,
deterministically!

(S, S̄)

In fact, the “derandomized algorithm” is equivalent
to a simple greedy strategy

We obtained the approximation ratio of the greedy
algorithm as a byproduct

Max SAT
The simple “Tossing Coins” strategy can also be
applied to the MAXimum SATisfiability problem.

MaxSAT

Input: A CNF formula

Problem: Compute an assignment that
satisfies maximum number of clauses

ϕ = C1 ∧ C2⋯ ∧ Cm

Formula , variables , ϕ V = {x1, …, xn} |Ci | = ℓi ≥ 1

Let us analyze the “tossing fair coins” algorithm

Let be the number of satisfied clausesX

E[X] =
m

∑
i=1

Pr[Ci is satisfied] =
m

∑
i=1

(1 − 2−ℓi) ≥
m
2

Recall

To bound the approximation ratio, we need an upper
bound for OPT(ϕ)

A trivial upper bound is OPT(ϕ) ≤ m

So the approximation ratio is 0.5

Can we improve it?

In the analysis we use ℓi ≥ 1

In fact, we can tweak those singleton clauses

If for some , only one of and is in x ∈ V x x̄ ϕ

• we can toss an unfair coin to increase its
chance to be satisfied

If both and are in , x x̄ ϕ

• only one of them can be satisfied in any
assignment!

Both cases are good for us!

Assume there are more positive singletons than
negative singletons in ϕ

Let
and

S = {x ∈ V : both x and x̄ are clauses}
t = |S |

Then OPT(ϕ) ≤ m − t

Let be the set of clauses and 𝒞
𝒞′ = 𝒞∖{singleton x and x̄ with x ∈ S}

For all , change it to x̄ ∈ 𝒞′ x Switch the positive and the
negative for all appearance of x

E[X] = t + ∑
C∈𝒞′

Pr[C is satisfied] ≥ t + (m − 2t) min{p,1 − p2}

The term is because the worst
case now is either a positive singleton or

min{p,1 − p2}
x ȳ ∨ z̄

Therefore

E[X] ≥ t + (OPT − t) min{p,1 − p2} ≥ min{p,1 − p2} ⋅ OPT

For , we have a -approximation
algorithm

p = 1 − p2 0.618

Non-identical Coins via LP

The drawback of previous algorithms is that we toss
the same coin for each variable

The linear programming can helps us to choose coins!

We first treat MaxSAT problem as an integer
programming

 - for each clause zj Cj

 - for each variable yi xi

The Integer Program

It is NP-hard to solve the IP

The Linear Program

OPT(ϕ) ≤ OPT(LP) =
m

∑
j=1

z*j

 - the optimal
solution of the LP
z* = {z*j }j∈[m], y* = {y*i }i∈[n]

We toss -coin for the variable !y*i xi

Pr[Cj is not satisfied] = ∏
i∈Pj

(1 − y*i) ∏
k∈Nj

y*k

≤
1
ℓj ∑

i∈Pj

(1 − y*i) + ∑
k∈Nj

y*k

ℓj

=
1
ℓj

ℓj − ∑
i∈Pj

y*i + ∑
k∈Nj

(1 − y*k)

ℓj

≤ (1 −
z*j
ℓj)

ℓj

.

AM-GM

E[X] =
m

∑
j=1

Pr[Cj is satisfied]

≥
m

∑
j=1

1 − (1 −
z*j
ℓj)

ℓj

≥
m

∑
j=1

1 − (1 −
1
ℓj)

ℓj

z*j

≥ (1 − e−1)
m

∑
j=1

z*j ≥ (1 −
1
e) OPT

Concavity

≈ 0.632

