
AI2615 算法设计与分析 2020-2021春季学期

Lecture 8 – Dynamic Programming
2021年 4月 16日

Lecturer: 张驰豪 Scribe: 陶表帅

Starting from this lecture, we will learn a new class of algorithms, dynamic programming, that is applicable
to a very board class of problems. In general, a problem for which dynamic programming is applicable
can be divided into multiple sub-problems, where those sub-problems are vertices of a directed acyclic
graph such that those sources are sub-problems that are simple enough to be solved directly and each of
those non-source vertices is a sub-problem whose solution depends on the solutions of the sub-problems
represented by the in-neighbors of this vertex. After breaking down the problem into sub-problems with a
directed acyclic graph structure, dynamic programming can be implemented in two different ways: topo-
logical sorting and memoization.
In the first approach, we find a total order of the vertices in a directed acyclic graph (e.g., using the method
at the end of Lecture 5). Then, following the order, we solve all the sub-problems, where each sub-problem
is solved by relating it to the previously solved sub-problems it depends on.
In the second approach, the problem is solved by directly throwing recursive calls to the sub-problems
it depends on. Whenever a solution to an intermediate sub-problem is obtained, it is stored, so that the
solution can be directly used if this sub-problem appears again in another branch of the recursion tree.

1 Finding Shortest Paths on Directed Acyclic Graphs

We will revisit the problem of finding the shortest path in a directed acyclic graph in Lecture 5. This
problem is a typical problem that can be solved by dynamic programming. It can also be viewed as a
canonical form of dynamic programming: as we mentioned earlier, dynamic programming solves those
problem that can be broken down to sub-problems forming a directed acyclic graph structure.

Problem 1. Given aweighted directed acyclic graphG = (V ,E , w) (where edgesmay have negativeweights)
and two vertices s and t , find the distance from s to t .

By the method we have learned in Lecture 5, we can sort the vertices in G by a total order that agrees
with the partial order defined by G . This enables us to label the vertices using 1,2, . . . ,n such that (i , j) ∈ E

implies i < j . An example is shown in Figure 1. We assume without loss of generality that s is the vertex
with label 1. If this is not the case, we can just delete all the vertices having index less than s, as we know
that there is no path from s to each of these vertices.

1

1 4

2 3 5

1
2 3

4
5

Figure 1: An example of topological sorting.

Coming back to our problem, a simple yet important observation is that, for any j > i , the shortest path
from s to i cannot contain j , for otherwise there is a path from j to i and j > i should not have been
true. Let dist(i) be the distance from s to i . The observations implies that the sub-problem dist(i) can only
depend on dist(1), . . . ,dist(i −1). In fact, we only need to look at each of i ’s in-neighbors, as a path from s

to i must visit one of i ’s in-neighbors before reaching i . We have the following recurrence relation:

dist(i) = min
j : j<i

{dist(j)+w(j , i)}, (1)

where we set w(j , i) =∞ if (j , i) ∉ E .
A recurrence relation like (1) is the key for a dynamic programming algorithm. Next, we will see two
different implementations for dynamic programming: topological sorting and memoization.

1.1 Topological Sorting

In this approach, all sub-problems are topologically sorted by a total order that agrees with the partial
order defined by the directed acyclic graph. Then, all the sub-problems are solved one-by-one following
the order. In our shortest path problem, we solve dist(1),dist(2), . . . ,dist(n) one-by-one. The algorithm is
shown in Algorithm 1.

Algorithm 1 A dynamic programming algorithm for the shortest path problem by topological sorting
Input: G = (V ,E , w) and s, t ∈V

Output: distance from s to t

1: find a total order on G , and label the vertices with 1, . . . ,n such that s = 1

2: dist(1) ← 0, and for each i = 2, . . . ,n: dist(i) ←∞
3: for i = 1, . . . ,n:
4: dist(i) = min j : j<i {dist(j)+w(j , i)}

5: endfor

6: return dist(t)

The time complexity for Algorithm 1 is O(m +n). Notice that, for Step 4, we do not need to check for all
vertices that are less than i . Instead, we only need to check for i ’s in-neighbors. Therefore, each edge is
checked exactly once.

2

1.2 Memoization

The recurrence relation (1) straightforwardly gives us the recursive algorithm in Algorithm 2, and Dist(t)
returns the distance from s to t .

Algorithm 2 A straightforward recursive algorithm for the shortest path problem
Dist(i)

1: if i = 1: return 0
2: return min j : j<i {dist(j)+w(j , i)}

Using the graph in Figure 1 as an example, if we call Dist(5), the recursion tree is shown in Figure 2. From
the figure, it is easy to see that Algorithm 2 merely enumerates all possible paths from 1 to 5. In general,
this requires exponential time.

Dist(1)

Dist(2) Dist(1) Dist(1)

Dist(3) Dist(1) Dist(2) Dist(1)

Dist(4) Dist(3)

Dist(5)

Figure 2: Recursion tree for Dist(5) for the graph in Figure 1.

However, there is a natural way to reduce the time complexity. From Figure 2, we can see that Dist(3)
and Dist(2) are computed for more than once. This is clearly unnecessary: once the value of Dist(2) (or
Dist(3)) is obtained, we can store it, and directly use it later. This is exactly the other implementation of
dynamic programming: the memoization. The algorithm is shown in Algorithm 3. To find the distance
from s to t , we call Dist(t).
When implementing a dynamic programming algorithm with memoization, it is of crucial importance to
store the solutions of sub-problems once obtained. Otherwise, it is often the case that the implementation
becomes an exponential time brute-force search.
The algorithm runs in O(m +n) time. Again, each edge is checked once.

3

Algorithm 3 A dynamic programming algorithm for the shortest path problem by memoization
Dist(i) // initialize array a[1 · · ·n] with a[1] = 0 and a[i] =∞ for i = 2, . . . ,n

1: if a[i] <∞: return a[i]

2: a[i] = min j : j<i {dist(j)+w(j , i)}

3: return a[i]

1.3 Topological Sorting versus Memoization

Which of the two implementations is better? This depends on the problemwe are dealingwith. Topological
sorting solves all the sub-problems “from left to right” in the topological order. Memoization starts from the
problem on the “right”, and goes to the “left” based on the recurrence relation. In particular, memoization
does not necessarily solve all the sub-problems. For example, if the graph in Figure 1 is changed by deleting
the edge (4,5), Dist(4) is not called when we call Dist(5). Therefore, memoization has the advantage
for skipping some of the unuseful sub-problems. On the other hand, throwing a recursive call to a sub-
problem is more time consuming than one iteration of the for-loop. In conclusion, memoization should be
used when we know that significantly many of the sub-problems will not be useful to solve the original
problem. Otherwise, topological sorting is a better idea.
Theoretically, the asymptotic time complexities for the two implementations are usually the same.

2 Longest Increasing Sequence

Problem 2. Given a sequence of n numbers a[1 · · ·n], find the length of the longest (strictly) increasing
sub-sequence.

For example, in the sequence 5,2,8,6,3,6,9,7, there are two longest increasing sub-sequence of length 4:
2,3,6,7 and 2,3,6,9.
To apply dynamic programming, we need to define sub-problems. A natural way for this is to define the
sub-problem F (i) being the length of the longest increasing sub-sequence from a[1], . . . , a[i], and F (n) is
what we want to return. Then, we need to find a recurrence relation of F (i). Now, we are facing the trouble
of relating F (i) to F (i −1), . . . ,F (1). The recurrence relation is hard to find. In particular, we do not know if
the i -th number should be in the longest sub-sequence. If the i -th number is in the sub-sequence, it places
a restriction to the solution of F (i −1), as the end of the longest sequence in the first i −1 numbers now
needs to be less than a[i]. Therefore, it is unclear how to break down F (i).
The trick here is to define the sub-problem differently so that a recurrence relation is easy to find. In this
problem, we can let F (i) be the length of the longest increasing sub-sequence in a[1], . . . , a[n] ending at a[i].
In this case, we have the following natural recurrence relation:

F (i) = 1+ max
j :(j<i)∧(a[j]<a[i])

{F (j)}. (2)

4

To find the longest increasing sub-sequence in a[1], . . . , a[n], we just need to return the largest value from
F (1), . . . ,F (n).
We leave it as an exercise to write the pseudo-code of the algorithm. The time complexity of the algorithm
is clearly O(n2).
The example in this section shows that sometimes we need to cleverly break down the problem into sub-
problems in order to make the dynamic programming efficient.

3 Edit Distance

Definition 3. Given two strings, the edit distance between them is the minimum number of operations
required to modify one string to the other, where each operation can be one of the following three:

• Deletion: deleting a character at a given position.

• Insertion: insert a character after a given position.

• Replacement: replace a character by a given character at a given position.

For example, the edit distance between the string SNOWY and the string SUNNY is 3: from the string
SNOWY, we can either change the middle three characters to UNN by three replacements, or insert an U

after the first character S, change the character O to N, and then delete the character W, each of which
requires 3 operations.

Problem 4. Given two strings x[1 · · ·n] and y = [1 · · ·m], find the edit distance between them.

A given sequence of operations that changes x to y can be viewed in the following way. We first expand
x and y by inserting multiple place-holder character “_”, so that x and y are of the same length, then we
align the two expanded strings by the positions of the characters. If the i -th positions of the two strings
are equal, then no operation was taken. If the i -th position of x is not a place-holder character while the
i -th position of y is, then a delete operation was taken. If the i -th position of x is a place-holder character
while the i -th position of y is not, then a insert operation was taken. If both the i -th position of x and the
i -th position of y are not the place-holder character and they are not equal, then a replace operation was
taken. Two examples are given in Figure 3.

S_NOWY SNOWY_____

SUNN_Y _____SUNNY

an insertion of U, an replacement of O to N, and an deletion of W five deletions and five insertions

Figure 3: Two Examples of operations with place-hold interpretation.

Let F (i , j) be the sub-problem for the edit distance between the substring x[0 · · · i] and the substring

5

y[0 · · · j]. We would like to find F (n,m). To find a recurrence relation, we only need to enumerate the
three possible cases regarding the last characters in the expansions of x[0 · · · i] and y[0 · · · j]:

• Case 1: the last characters of the two expanded strings are x[i] and the place-holder character re-
spectively (a deletion was performed);

• Case 2: the last characters of the two expanded strings are the place-holder character and y[j]

respectively (an insertion was performed);

• Case 3: the last characters of the two expanded strings are x[i] and y[j] respectively (if x[i] ̸= y[j],
a replacement was performed; otherwise, nothing was done);

This gives the following recurrence relation:

F (i , j) = min
{
F (i , j −1)+1,F (i −1, j)+1,F (i −1, j −1)+ I(x[i] ̸= y[j])

}
, (3)

where I(·) is the indicator function:

I(p) =
 1 if p is true

0 otherwise
.

For the initial condition, we have F (0, j) = j for each j = 1, . . . ,m and F (i ,0) = i for each i = 1, . . . ,n.
In the dynamic programming algorithm, we have broken down the problem into nm sub-problems. The
underlying directed acyclic graph is shown in Figure 4 with n = 3 and m = 5.

Figure 4: Underlying directed acyclic graph for the dynamic programming algorithm for the edit distance,
with n = 3 and m = 5.

In this problem, if we use memoization, no sub-problem can be skipped. Therefore, topological sorting is
a better implementation. To find a total order that agree with the directed acyclic graph, we can either
use the row-by-row order or column-by-column order. In terms of coding, we can nest the two for-loops
in both ways: either put the for-loop for i inside the for-loop for j , or put the for-loop for j inside the
for-loop for i . The time complexity is given by O(nm).

Exercise 5. Suppose each of the three operations, deletion, insertion and replacement, require different
costs. Adapt the dynamic programming algorithm to find the edit distance for this setting.

6

4 Knapsack

Problem 6 (Knapsack). Given a set of n items each of which has a weight wi ∈ Z+ and a value vi ∈ R+,
and given a capacity W ∈Z+, find a subset of items with maximum total value such that the total weight
is at most W .

We consider two different settings for the Knapsack problem:

• Setting 1: each item has infinitely many copies, so that we can choose the same item for more than
once;

• Setting 2: each item can only be chosen once.

For example, we have four items with weights (w1, w2, w3, w4) = (6,3,4,2) and values (v1, v2, v3, v4) =
(30,14,16,9), and we have the capacity W = 10. Under Setting 1, the optimal solution is to take the first
item once and the fourth item twice. The total weight is 10 and the total value is 48. Under Setting 2, the
optimal solution is to take the first item and the third item. The total weight is 10 and the total value is 46.
There is a natural greedy algorithm for this: iteratively select an item with the largest value-to-weight
ratio vi /wi while possible. However, this algorithm does not always output the optimal solution. In the
above-mentioned example, this greedy algorithm will select the first and the second item in both settings,
which has total value only 44.

Exercise 7. Consider a different setting where items are divisible. That is, we are allow to choose, for
example, a 0.5 fraction of an item. In this setting, each item has only one copy. Adapt the greedy algorithm
mentioned above so that it always outputs an optimal solution under this setting.

4.1 Setting 1

For each w = 0,1, . . . ,W , let F (w) be themaximum total value if the capacity is w . We need to find F (W). By
enumerating all the possibilities for the previous selected item, we have the following recurrence relation:

F (w) = max
i :1≤i≤n;wi≤w

{vi +F (w −wi)}, (4)

with initial condition F (0) = 0. Figure 5 presents the incoming edges for vertex F (10) in the underlying
directed acyclic graph for the dynamic programming, with the example (w1, w2, w3, w4) = (6,3,4,2), values
(v1, v2, v3, v4) = (30,14,16,9), and W = 10.

0 1 2 3 4 5 6 7 8 9 10

Figure 5: The incoming edges for vertex F (10) in the underlying directed acyclic graph.

7

A dynamic programming algorithm can be designed based on (4), with time complexity O(W n). In this
problem, memoization is usually a better implementation, especially when the weights of the items are
generally large. This is because we can skip many sub-problems. Notice that we are not talking about the
worst-case scenario. In the worst-case scenario where there is an item with weight 1, we have to come
across every sub-problem.

4.2 Setting 2

For each w = 0,1, . . . ,W and each k = 0,1, . . . ,n, let F (w,k) be the maximum total value if the capacity is
w and we are only allowed to select from the first k items. We need to find F (W,n). To find a recurrence
relation for F (w,k), we consider the k-th item. If the k-th item has weight more than w , we know that
the k-th item cannot be added. Otherwise, there are two options: include the k-th item, or not. By taking
these possibilities into consideration, we have the following recurrence relation:

F (w,k) =
 F (w,k −1) if wk > w

max{F (w,k −1),F (w −wk ,k −1)+ vk } if wk ≤ w
. (5)

We leave it as an exercise to fill in the remaining details for this dynamic programming algorithm.

5 Chain Matrix Multiplication

Suppose A,B ,C ,D are four matrices with dimensions given in Table 1, and we would like to compute
A×B ×C ×D .

matrix A B C D

dimension 50×20 20×1 1×10 10×100

Table 1: Dimensions of the four matrices

We know that matrix multiplication satisfies associative law. The multiplication A ×B ×C ×D can be
computed in different orders. In particular, different orders of computation require different numbers of
operations. For example, if the multiplication is done by the order A × ((B ×C)×D), the total number of
operations is

20×1×10+20×10×100+50×20×100 = 120200.

If the multiplication is done by the order (A×B)× (C ×D), the total number of operations is

50×20×1+1×10×100+50×100×1 = 7000.

We can see that a better order of computation can save a significant number of operations. This motivates
the following problem.

8

A B C D

50× 1 1× 100

50× 100

(A×B)× (C ×D)

A

B C

D
20× 10

20× 100

50× 100

A× ((B × C)×D)

Figure 6: Full binary tree representation for the order of multiplication. Leafs are labeled with matrix
names, and internal nodes are labeled with the dimensions of the matrices.

Problem 8. Given n matrices M1, . . . , Mn with dimensions m0 ×m1,m1 ×m2, . . . ,mn−1 ×mn respectively,
find an order of the multiplication M1 ×M2 ×·· ·×Mn with minimum number of operations.

An order of multiplication for M1 ×M2 ×·· ·×Mn can be described by a full binary tree with n leafs, such
that the two children for every internal node are multiplied and the parent of the two children represents
the product of this multiplication. The full binary tree representations for the two examples (A×B)×(C×D)

and A× ((B ×C)×D) are shown in Figure 6.
Consider an internal node i with two children j1 and j2. The dimension of the matrix represented by i

is determined by the dimensions of the two matrices represented by j1 and j2 respectively. In particular,
the number of the operations to compute the product of the two matrices represented by j1 and j2 is
independent to how j1 and j2 further break down. Suppose we are at an internal node representing Mi ×
Mi+1 ×·· ·×M j for certain i , j with j > i . Its two children must represent Mi ×·· ·Mk and Mk+1 ×·· ·×M j

for certain k with i ≤ k < j . If k is determined, the number of operations for computing the product of the
two matrices (Mi ×·· ·Mk) and (Mk+1 ×·· ·×M j) is determined, which is mi−1 ×mk ×m j .
Let F (i , j) be the optimal number of operations to compute Mi ×Mi+1 ×·· ·×M j . We have the recurrence
relation

F (i , j) = min
k:i≤k< j

{
F (i ,k)+F (k +1, j)+mi−1 ×mk ×m j

}
. (6)

We need to compute F (1,n). We have the initial condition F (i , i) = 0 for any i = 1, . . . ,n. Figure 7 presents
all the incoming edges for the vertex F (2,5) in the directed acyclic graph under the dynamic programming
for an example with n = 6.

Exercise 9. Shall we use topological sorting or memoization here?

Exercise 10. Give a topological order for the underlying directed acyclic graph.

9

F (1, 6)

F (2, 5)

Figure 7: The incoming edges for vertex F (2,5) in the underlying directed acyclic graph.

10

	Lecture 8 – Dynamic Programming
	Finding Shortest Paths on Directed Acyclic Graphs
	Topological Sorting
	Memoization
	Topological Sorting versus Memoization

	Longest Increasing Sequence
	Edit Distance
	Knapsack
	Setting 1
	Setting 2

	Chain Matrix Multiplication

