Algorithms for Big Data (V)

Chihao Zhang

Shanghai Jiao Tong University

Oct. 18, 2019

Review of the Last Lecture

Last time, we learnt Misra-Gries and Count Sketch for Frequency Estimation.
The later has the advantage of being a linear sketch.
It also generalize to turnstile model.

Count Sketch

```
Algorithm Count Sketch
    Init:
    An array \(C[j]\) for \(j \in[k]\) where \(k=\frac{3}{\varepsilon^{2}}\).
    A random Hash function \(h:[n] \rightarrow[k]\) from a 2 -universal family.
    A random Hash function \(\mathrm{g}:[\mathrm{n}] \rightarrow\{-1,1\}\) from a 2-universal family.
    On Input ( \(\mathrm{y}, \Delta\) ):
    \(\mathrm{C}[\mathrm{h}(\mathrm{y})] \leftarrow \mathrm{C}[\mathrm{h}(\mathrm{y})]+\Delta \cdot \mathrm{g}(\mathrm{y})\)
```

 Output: On query a :
 Output \(\widehat{f}_{a}=g(a) \cdot C[h(a)]\).

The Performance

We can apply the median trick to obtain:
$-\operatorname{Pr}\left[\left|\widehat{\mathrm{f}}_{\mathrm{a}}-\mathrm{f}_{\mathrm{a}}\right| \geqslant \varepsilon\|\mathbf{f}\|_{2}\right] \leqslant \delta ;$

- it costs $\mathrm{O}\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta}(\log \mathfrak{m}+\log \mathfrak{n})\right)$ bits of memeory.

Today we will see another simple sketch algorithm.

Count-Min

We assume that for each entry (y, Δ), it holds that $\Delta \geqslant 0$.

Algorithm Count-Min

Init:

An array $C[i][j]$ for $i \in[t]$ and $j \in[k]$ where $t=\log (1 / \delta)$ and $k=2 / \varepsilon$.
Choose t independent random Hash function $h_{1}, \ldots, h_{t}:[n] \rightarrow[k]$ from a 2-universal family.
On Input (y, Δ) :
For each $\mathfrak{i} \in[t], C[i]\left[h_{i}(y)\right] \leftarrow C[i]\left[h_{i}(y)\right]+\Delta$.
Output: On query a :
Output $\widehat{f}_{a}=\min _{1 \leqslant i \leqslant t} C[i][h(a)]$.

Analysis

Obviously we have $f_{a} \leqslant \widehat{f}_{a}$.
Our algorithm overestimates only if for some $b \neq a, h_{i}(b)=h_{i}(a)$. Let $Y_{i, b}$ be the indicator of this event.

Let X_{i} be $C[i]\left[h_{i}(a)\right]$. Then

$$
E\left[\widehat{X}_{i}\right]=\sum_{b \in[n]} f_{b} E\left[Y_{i, b}\right]=f_{a}+\sum_{b \in[n]: b \neq a} f_{b} E\left[Y_{i, b}\right]=f_{a}+\frac{\sum_{b \in[n]: b \neq a} f_{b}}{k} \leqslant f_{a}+\frac{\|f\|_{1}}{k} .
$$

Thus,

$$
\operatorname{Pr}\left[\left|X_{i}-f_{a}\right| \geqslant \varepsilon\|\mathbf{f}\|_{1}\right] \leqslant \frac{\|\mathbf{f}\|_{1}}{k \varepsilon\|\mathbf{f}\|_{1}}=\frac{1}{2} .
$$

Since our output is the minimum out of t independent X_{i} 's,

$$
\begin{aligned}
\operatorname{Pr}\left[\widehat{f}_{\mathfrak{a}}-\mathrm{f}_{\mathrm{a}} \geqslant \varepsilon\|\mathbf{f}\|_{1}\right] & =\operatorname{Pr}\left[\left|\min \left\{\mathrm{X}_{1}, \ldots, X_{\mathrm{t}}\right\}-\mathrm{f}_{\mathrm{a}}\right| \geqslant\|\mathbf{f}\|_{1}\right] \\
& =\operatorname{Pr}\left[\bigwedge_{i=1}^{\mathrm{t}}\left(\left|X_{i}-\mathrm{f}_{\mathrm{a}}\right| \geqslant \varepsilon\|\mathbf{f}\|_{1}\right)\right] \\
& =\prod_{\mathfrak{i}=1}^{\mathrm{t}} \operatorname{Pr}\left[\left|X_{i}-\mathrm{f}_{\mathrm{a}}\right| \geqslant \varepsilon\|\mathbf{f}\|_{1}\right] \leqslant 2^{-\mathrm{t}}=\delta .
\end{aligned}
$$

The algorithm computes a linear sketch using

$$
\mathrm{O}\left(\frac{1}{\varepsilon} \log \frac{1}{\delta} \cdot(\log m+\log n)\right)
$$

bits of memory.
It can be generalized to turnstile model (Exercise).

Frequency Moments

The k-th frequency moment of a stream is

$$
F_{k} \triangleq \sum_{j \in[n]} f_{j}^{k}=\|\mathbf{f}\|_{k}^{k}
$$

For example, F_{2} is the size of self-join of a relation r.
Many problems we met before can be viewed as estimating F_{k} for some special k.

AMS Estimator for F_{k}

Given $\left\langle a_{1}, \ldots, a_{m}\right\rangle$, then algorithm first sample a uniform index $J \in[m]$.
It then count the number of entries a_{j} with $a_{j}=a_{J}$ and $j \geqslant J$.

$$
\begin{aligned}
& \hline \text { Algorithm AMS Estimator for } \mathrm{F}_{\mathrm{k}} \\
& \hline \text { Init: }(\mathrm{m}, \mathrm{r}, \mathrm{a}) \leftarrow(0,0,0) \text {. } \\
& \text { On Input }(\mathrm{y}, \Delta) \text { : } \\
& \mathrm{m} \leftarrow \mathrm{~m}+1, \beta \sim \operatorname{Ber}\left(\frac{1}{\mathrm{~m}}\right) \text {; } \\
& \text { if } \beta=1 \text { then } \\
& \quad a \leftarrow y, r \leftarrow 0 \text {; } \\
& \text { end if } \\
& \text { if } y=a \text { then } r \leftarrow r+1 \\
& \text { end if } \\
& \text { Output: } \\
& m\left(r^{k}-(r-1)^{k}\right) .
\end{aligned}
$$

Analysis

We first compute the expectation of the output X.
Assuming $a=j$ at the end of algorithm, then

$$
\mathbf{E}[X \mid a=j]=\mathbf{E}\left[m\left(r^{k}-(r-1)^{k}\right) \mid a=j\right]=\sum_{i=1}^{f_{j}} \frac{1}{f_{j}} \cdot m\left(i^{k}-(i-1)^{k}\right)=\frac{m}{f_{j}} \cdot f_{j}^{k} .
$$

Therefore,

$$
E[X]=\sum_{j=1}^{n} \operatorname{Pr}[a=j] \cdot E[X \mid a=j]=\sum_{j=1}^{n} \frac{f_{j}}{m} \cdot \frac{m}{f_{j}} \cdot f_{j}^{k}=F_{k} .
$$

The Variance

$$
\begin{aligned}
\operatorname{Var}[X] & \leqslant E\left[X^{2}\right]=\sum_{j=1}^{n} \frac{f_{j}}{m} \sum_{i=1}^{f_{j}} \frac{1}{f_{j}} \cdot m^{2}\left(i^{k}-(i-1)^{k}\right)^{2} \\
& \leqslant m \sum_{j=1}^{n} \sum_{i=1}^{f_{j}} k i^{k-1}\left(i^{k}-(i-1)^{k}\right) \\
& \leqslant m \sum_{j=1}^{n} k f_{j}^{k-1} \sum_{i=1}^{f_{j}}\left(i^{k}-(i-1)^{k}\right) \\
& =m \sum_{j=1}^{n} k f_{j}^{k-1} \cdot f_{j}^{k}=k\left(\sum_{j=1}^{n} f_{j}\right)\left(\sum_{j=1}^{n} f_{j}^{2 k-1}\right) .
\end{aligned}
$$

Assume $k \geqslant 1$ and let $f_{*} \triangleq \max _{j \in[n]} f_{j}$.

$$
\begin{aligned}
\operatorname{Var}[X] & \leqslant k \sum_{j=1}^{n} f_{j} \cdot\left(f_{*}^{k-1} \sum_{j=1}^{n} f_{j}^{k}\right) \\
& \leqslant k \sum_{j=1}^{n} f_{j} \cdot\left(\left(f_{*}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k}\right) \\
& \leqslant k \sum_{j=1}^{n} f_{j} \cdot\left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k}
\end{aligned}
$$

Applying Jensen's inequality on $g(z)=z^{1 / k}$, we can bound above by
$k \sum_{j=1}^{n}\left(f_{j}^{k}\right)^{\frac{1}{k}}\left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k} \leqslant k n^{1-1 / k}\left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{1}{k}}\left(\sum_{j=1}^{n} f_{j}^{k}\right)^{\frac{k-1}{k}} \sum_{j=1}^{n} f_{j}^{k}=k n^{1-1 / k} F_{k}^{2}$.

Therefore,

$$
\operatorname{Pr}\left[\left|X-F_{k}\right| \geqslant \varepsilon F_{k}\right] \leqslant \frac{k n^{1-1 / k}}{\varepsilon^{2}}
$$

Now we can apply the standard averaging trick and median trick.
To kill the $n^{1-1 / k}$ factor in the variance, we need to average $\Omega\left(n^{1-1 / k}\right)$ estimates.
An (ε, δ) estimator requires

$$
\mathrm{O}\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta} \mathrm{k} n^{1-1 / \mathrm{k}}(\log m+\log n)\right)
$$

bits of memory.

The Tug-of-War Sketch

The following simple algorithm for F_{2} outperforms AMS by using only $O(\log n+\log m)$ bits.

Algorithm Tug-of-War Sketch

Init:
A random Hash function $h:[n] \rightarrow\{-1,1\}$ from a 4-universal family.
$x \leftarrow 0$.
On Input (y, Δ):
$x \leftarrow x+\Delta \cdot h(y)$
Output:
Output x^{2}.

Analysis

Let X be the value of X at the end of our algorithm.

$$
E\left[X^{2}\right]=E\left[\left(\sum_{j \in[n]} f_{j} h(j)\right)^{2}\right]=E\left[\sum_{j \in[n]} f_{j}^{2} h(j)^{2}+\sum_{i, j \in[n]: i \neq j} f_{i} f_{j} h(i) h(j)\right]=F_{2} .
$$

Using the property of 4-universal Hash family, we have

$$
\begin{aligned}
E\left[X^{4}\right] & =\sum_{i, j, k, \ell \in[n]} f_{i} f_{j} f_{k} f_{\ell} E[h(i) h(j) h(k) h(\ell)] \\
& =\sum_{j \in[n]} f_{j}^{4} E\left[h(j)^{4}\right]+6 \sum_{i, j \in[n]: j>i} f_{i}^{2} f_{j}^{2} E\left[h(i)^{2} h(j)^{2}\right]=F_{4}+6 \sum_{i, j \in[n]: j>i} f_{i}^{2} f_{j}^{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\operatorname{Var}\left[X^{2}\right] & =\mathbf{E}\left[X^{4}\right]-\left(E\left[X^{2}\right]\right)^{2} \\
& =F_{4}-F_{2}^{2}+6 \sum_{i, j \in[n]: j>i} f_{i}^{2} f_{j}^{2} \\
& =F_{4}-F_{2}^{2}+3\left(F_{2}^{2}-F_{4}\right) \leqslant 2 F_{2}^{2} .
\end{aligned}
$$

Finally, we apply the median trick and it costs

$$
\mathrm{O}\left(\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta}(\log n+\log m)\right)
$$

bits of memory.

