
[CS1961: Lecture 1] Introduction, Basic Counting Tech-
niques
Instructor: Chihao Zhang; Scribed by Yuchen He

September 19, 2022

1 Introduction to Combinatorics in Computer Science

Combinatorics is an area of mathematics mainly focusing on discrete ob-
jects. In Combinatorics, one often asks questions about

• existence / construction of objects satisfying certain properties;

• enumeration / counting objects satisfying certain properties;

• and picking the best object satisfying certain properties.

In this course, we will mainly focus on the first two classes of problems,
namely existence / construction and enumeration / counting. The third,
frequently referred to as combinatorial optimization, is nearly identical
algorithm design and will be covered in future courses. We will examine
some typical examples today, and demonstrate their connections with
computer science.

1.1 Existence/Construction

1.1.1 Ramsey Number
A typical problem in extremal combinatorics is the study of the Ramsey
number. It states the a fact that for any six people, we can find three among
them who either know each other or do not know each other.

In the language of graph theory, we can use a complete graph to describe
the acquaintanceship between these people. Each edge is dyed red or blue
to represent whether the two ends are acquaint with each other or not
respectively. The Ramsey number 𝑅(𝑠, 𝑡) is the minimum vertices number of
a complete graph such that there exists a blue clique of size 𝑠 or a red clique
of size 𝑡 .

𝑅(3, 3) = 6𝑅(3, 3) > 5

One can verify that 𝑅(3, 3) = 6 by hand. For general 𝑠 and 𝑡 , we do
not know the Ramsey number exactly. It is not hard to show that 𝑅(𝑠, 𝑡) is

[cs1961: lecture 1] introduction, basic counting techniqes 2

always finite. We will give a lower bound of 𝑅(𝑠, 𝑡) using the probabilistic
method in the course.
1.1.2 Lovász Local Lemma
An important decision problem in computer science is SAT. Given a CNF
𝜙 ,1, the problem asks whether 𝜙 is satisfiable. 1 A conjunction normal form (CNF) 𝜙

is a propositional formula in form like
𝜙 = 𝐶1 ∧𝐶2 ∧ · · ·𝐶𝑚 where each clause𝐶𝑖

is a disjunctive of several variables.

The Lovász Local Lemma gives a sufficient condition for a formula 𝜙 to
be satisfiable.

Lemma 1 (Lovász Local Lemma) If the CNF 𝜙 satisfies the following three
conditions:

• 𝜙 is 𝑘-regular; 2 2 This means each clause of 𝜙 contains 𝑘
variables. In other words, 𝜙 is a 𝑘-CNF.

• each variable appears in at most 𝑑 clauses;

• 𝑑 < 2𝑘
𝑒𝑘 ;

3 3 𝑒 is the base of natural logarithms.

Then 𝜙 is satisfiable.

Lemma 1 is a statement about the existence of feasible solutions. How
to construct such a solution? In computer science, one often asks for ef-
ficient algorithms, which usually indicate those algorithms who can find
a solution in polynomial-time. Clearly one can enumerate every possible
assignments of a CNF 𝜙 to find a solution. However, this may need 2𝑂 (𝑛) (𝑛
is the number of variables) trials and is inefficient.

In a promient work, Robin Moser and Gábor Tardos proposed an algo-
rithm to find a feasible solution and proved its efficiency under conditions
similar to Theorem 1. The algorithm starts by assigning random values to
the variables in 𝜙 . We denote this initial assignment by 𝜎 . In each round,
if 𝜙 is satisfied, we output 𝜎 as the feasible solution and end the algorithm.
Otherwise, pick an arbitrary unsatisfied clause, resample the variables in it
and repeat. This algorithm only needs expected linear time if 𝜙 satisfies the
conditions in Lemma 1.

We will study the analysis of this algorithm in later courses.

1.2 Enumeration/Counting

1.2.1 Distinct Labeled trees
Suppose there are 𝑛 labeled vertices. How many distinct labeled trees can
we construct? The Cayley’s formula states that this number is 𝑛𝑛−2. Note
that this result is very concise that we can immediately get the answer
given any 𝑛. We call this a closed form solution4. 4 Closed form is a mathematical expres-

sion which usually contains only basic
operations and finite variables.

1.2.2 Spanning trees
Given a connected graph 𝐺 , we can always generate a tree by removing
some edges and this is called the spanning tree of 𝐺 . Note that spanning
tree may not be unique. For example, the following graph has three span-
ning trees in total.

[cs1961: lecture 1] introduction, basic counting techniqes 3

1

2 3

1

2 3

Two distinct labeled trees

3

4
2 1

3

4
2 1

3

4
2 1

3

4
2 1

Let 𝐴 and 𝐷 be the adjacent matrix and degree matrix of 𝐺 respectively.
Then the corresponding 𝐴 and 𝐷 for the above graph is:

𝐴 =

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

, 𝐷 =

1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2

.

To count the total number of spanning trees, we have the following
theorem.

Theorem 2 (Kirchhoff’s Theorem) The number of spanning trees equals to
det[𝐷 − 𝐴]𝑖𝑖 where [𝐷 − 𝐴]𝑖𝑖 is the minor of the element at line 𝑖 and column
𝑖 for any 𝑖 .

For an 𝑛×𝑛 matrix 𝐵, its determinant det(𝐵) is defined as
∑

𝜎 ∈𝑆𝑛 (−1) ∥𝜎 ∥ ∏𝑛
𝑖=1 𝐵(𝑖, 𝜎 (𝑖))

where 𝑆𝑛 is all the permutations of [𝑛] and ∥𝜎 ∥ is the parity of 𝜎 . The deter-
minant can be calculated in polynomial time by Gaussian elimination.
1.2.3 Perfect Matchings in Bipartite
Given a bipartite graph with 𝑛 vertices and its adjacent matrix 𝐴, its perfect
matching number per(𝐴) can be calculated by

per(𝐴) =
∑
𝜎 ∈𝑆𝑛

𝑛∏
𝑖=1

𝐴(𝑖, 𝜎 (𝑖).

Although this formula looks like the definition of determinant, it is much
harder than computing determinant. Actually, computing the number of
perfect matchings on bipartite graphs is #P-complete 5. 5 Informally, #P problems can be defined as

those counting the number of solutions of
NP problems. Thus, #P-complete problems
is at least as hard as NP-compelte problems

A Bipartite and Its Perfect Matchings

[cs1961: lecture 1] introduction, basic counting techniqes 4

2 Basic Counting Techniques

2.1 Basic Counting Techniques

Suppose we are setting a password with length 𝑘 . Each character of the
password can be chosen from {𝐴, 𝐵, . . . , 𝑍, 𝑎, 𝑏, . . . , 𝑧, 0, 1, . . . , 9}. Consider
the following four situations.

(1) In the normal setting, since every character has 62 choices, there are
62𝑘 ways to set the password. More generally, we will have 𝑛𝑘 possible
password sequences if there are 𝑛 options for each character.

(2) If it does not allow repetition, the subsequence will have smaller op-
tional scope once the preceding characters are fixed. In this situation,
there are (𝑛)𝑘 possible ways to set the password. (𝑛)𝑘 ≜ 𝑛 (𝑛 − 1) · · · (𝑛 − 𝑘 + 1)

(3) Based on (2), we further assume that the order of the sequence does not
matter. Then the problem is the same with choosing 𝑘 numbers from
[𝑛] and the number of possible ways is

(𝑛
𝑘

)
. (𝑛

𝑘

)
≜ 𝑛!

𝑘!(𝑛−𝑘) !

(4) If repetition is allowed and sequence order does not matter, it is equiva-
lent to choosing a multi-set of size 𝑘 from [𝑛]. This multi-set number is
written as

((𝑛
𝑘

))
.

We can construct a bijection between the set of multi-sets and a subset
of {0, 1}𝑛+𝑘 . Note that a binary string which ends at 1 and has 𝑛 1’s and
𝑘 0’s can be comprehended in the following way. The 𝑛 1’s represents 𝑛
types of characters. The number of consecutive 0’s immediately before
the 𝑖-th 1 means the number of occurrence of the 𝑖-th character in the
corresponding password.6 6 For example, when the characters are

chosen from {𝐴, 𝐵,𝐶, 𝐷 } and 𝑘 = 3, the
password 𝐴𝐴𝐶 can be encoded as 0011011.Therefore, the number of different passwords is exactly the number of

such binary strings, i.e.,
((𝑛
𝑘

))
=
(𝑛+𝑘−1

𝑘

)
.

2.2 The Pigeonhole Principle

The pigeonhole principle states that when there are more pigeons than the
pigeonholes, there must exist some pigeonholes with more than 1 pigeon. It
is also called the drawer principle.

Example 1 Assume 5 points are put in a square with side length 1. Then there
must exist two points with distance no larger than 1√

2
. 1

1

This can be easily proved by the pigeonhole principle. Note that if we divide
the square into four smaller ones as the figure shows, the longest segment in
each block is the diagonal line whose length is 1√

2
. By the pigeonhole principle,

there must be two points in the same block. That is, there must be two points
with distance no larger than 1√

2
.

[cs1961: lecture 1] introduction, basic counting techniqes 5

Recall the problem of finding the closest pair of points on the plane. Sup-
pose there are 𝑛 points 𝑣1, 𝑣2, . . . , 𝑣𝑛 in ℝ2 and the coordinate of 𝑣𝑖 is (𝑥𝑖 , 𝑦𝑖)
for 𝑖 ∈ [𝑛]. The distance between two points is defined as the Euclidean

distance, i.e., dist(𝑣𝑖 , 𝑣 𝑗) ≜
√(

𝑥𝑖 − 𝑥 𝑗
)2 + (

𝑦𝑖 − 𝑦 𝑗
)2. Let 𝑆 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}.

Our aim is to design an algorithm Find(𝑆) which can output the shortest
distance among all the pairs of points. The simplest way is to use brute
force, i.e., enumeration method, which leads to a time complexity of 𝑂 (𝑛2).
A more efficient and frequently used method is divide and conquer.

𝑡𝑡 − ℎ 𝑡 + ℎ

As a preprocessing step, we sort the points by its abscissa and ordinate
respectively for later use. This takes 𝑂 (𝑛 log𝑛).

The first step is to draw a vertical line 𝑥 = 𝑡 which divides the points
set 𝑆 evenly into the right part 𝑆𝑅 and left part 𝑆𝐿 . With the preprocessing
step, this only takes 𝑂 (1) time. Then we calculate ℎ𝐿 = Find(𝑆𝐿) and
ℎ𝑅 = Find(𝑆𝑅) recursively. Let ℎ = min {ℎ𝐿, ℎ𝑅}.

The last step is to find the closest pair in 𝑆𝑀 = {𝑣𝑖 | 𝑥𝑖 ∈ [𝑡 − ℎ, 𝑡 + ℎ]}
and compare the distance with ℎ. If we can do this in 𝑂 (𝑛), then the total
time cost 𝑇 (𝑛) will satisfie 𝑇 (𝑛) = 2𝑇

(𝑛
2
)
+ 𝑂 (𝑛) and consequentially we

have 𝑇 (𝑛) = 𝑂 (𝑛 log𝑛).
To achieve this goal, we first sort the points in 𝑆𝑀 by its ordinate with

the help of preprocesssing in 𝑂 (𝑛) time. For each 𝑣 𝑗 ∈ 𝑆𝑀 , we check the
distances between 𝑣 𝑗 and

{
𝑣 𝑗+1, 𝑣 𝑗+2, . . . , , 𝑣 𝑗+7

}
respectively7 and compare 7 Without loss of generality, we assume that

the subscript of these points is in the order
of the ordinate. That is, 𝑦1 ≤ 𝑦2 ≤ · · · ≤
𝑦 𝑗 ≤ 𝑦 𝑗+1 ≤ · · · ≤ 𝑦 |𝑆𝑀 | .

these with ℎ. If there is a distance smaller than ℎ, we update ℎ with this
smaller distance. When the process ends, we output the current ℎ. This
process takes 𝑂 (𝑛) time.

The remaining thing is to prove the correctness of the last step. That is,
we need prove checking only 7 points one time is sufficient. Assume there
is a point 𝑣𝑘 whose ordinate is no less than 𝑣 𝑗 and dist(𝑣 𝑗 , 𝑣𝑘) < ℎ. Then
𝑣𝑘 and 𝑣 𝑗 must be in a rectangle as the figure shows. With Example 1, we

ℎ

ℎ ℎ

𝑣𝑗

𝑣𝑘

know that there are at most 4 points in the right square or otherwise it will
violate the fact that ℎ ≤ min {ℎ𝐿, ℎ𝑅}. Similarly there are at most 4 points in
the left part. So the number of such 𝑣𝑘 ’s is no larger than 7.

	Introduction to Combinatorics in Computer Science
	Existence/Construction
	Enumeration/Counting

	Basic Counting Techniques
	Basic Counting Techniques
	The Pigeonhole Principle

