
[CS1961: Lecture 10] Girth and Chromatic Number,
Second-Moment Method
Instructor: Chihao Zhang;
Scribed by Haosong Liu, Shuangcheng Liu, Yuxiao Yang, Yuchen
He

1 Girth and Graph Coloring

Definition 1 (Girth) Given an undirected graph G = (V,E), the girth of G is
the length of the shortest cycle in G. Specifically, when G does not contain any
cycle, i.e., G is a forest, its girth is ∞.

For example, the girth of a bipartite graph must be a even number no less
than 4.

Girth reflects the connectivity of G in a sense. Intuitively, the denser G
is, the smaller girth(G) might be.

girth(G) = 3

girth(G) = 4

girth(G) = ∞
Definition 2 (Chromatic Number) The chromatic number of a graph G =

(V,E) is defined as χ(G) = min {q ∈ N | G has a proper q-coloring}. 1

1 A proper q-coloring means we color
each vertex with one of the q colors while
guaranteeing no monochromatic edges.

Denser graphs tend to have larger chromatic number. The chromatic num-
ber of a complete graph χ(Kn) is n and the chromatic number of a tree is
at most 2. However, this intuition is not generally correct. For example, the
chromatic number of a bipartite graph is 2 while bipartite graphs can be
very dense. In fact, Erdős showed that there exists graph with arbitrarily
large chromatic number and large girth.

Theorem 3 (Erdős,1959) For any k, ℓ ∈ N, there exists a graph G with
girth(G) ⩾ ℓ and χ(G) ⩾ k.

A tentative proof of Theorem 3.
We prove the theorem using probabilistic method by drawing graphs

from G ∼ G(n,p) with appropriate p. 2 To prove the existence of a graph 2 In the Erdős-Rényi random graph model
G(n,p), a graph with n vertices is
constructed by including each edge with
probability p independently. The graph G

tends to be dense when p is large and tends
to be sparse for smaller p.

with desired property, we can turn to prove that there are respectively more
than half graphs with girth(G) ⩾ ℓ and with χ(G) ⩾ k.

We compute the probability of G having each of the two properties
respectively.

For the first part, we want to choose a p such that with probability larger
than 1

2 , girth(G) ⩾ ℓ. Let X be the number of cycles with length no larger
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than ℓ in G. Then

E [X] = E

 ℓ∑
i=0

∑
(v1,v2,··· ,vi)

1[(v1, v2, · · · , vi) is a cycle ]


=

ℓ∑
i=0

∑
(v1,v2,··· ,vi)

Pr [(v1, v2, · · · , vi) is a cycle ]

(1)
=

ℓ∑
i=3

(
n

i

)
· i!2i · p

i ⩽
ℓ∑

i=3

n(n− 1)(n− 2) · · · (n− i+ 1)
2i · pi

⩽
ℓ∑

i=3
(np)i ⩽ (np)ℓ+1 ,

where (1) follows from the fact that i vertices can form i! cycles and each
cycle is counted repeatedly for 2i times. By the Markov’s inequality,

Pr [X > 0] = Pr [X ⩾ 1] ⩽ E [X] ⩽ (np)ℓ+1 .

We can choose p = O( 1
n
) to satisfy the requirement Pr [X > 0] < 1

2 and
consequently we have Pr [girth(G) ⩾ ℓ] > 1

2 .
For the second part, we want to choose a p satisfying that with proba-

bility larger than 1
2 , χ(G) ⩾ k. Recall that χ(G) = k indicates G can be

divided into k independent sets. By the pigeonhole principle, there exists an
independent set with size no less than n

k
. Therefore,

Pr [χ(G) ⩽ k] ⩽ Pr
[
α(G) ⩾ n

k

]
where α(G) is the independent number of G. Note that for any x ∈ N,

Pr [α(G) ⩾ x] ⩽ Pr
[
∃S ∈

(
[n]

x

)
,S is an independent set

]
⩽

(
n

x

)
(1 − p)(

x
2) ⩽ nx · e

−px(x−1)
2

=
(
ne

−p(x−1)
2

)x

.

By choosing p ⩾ 3
x

logn, we have Pr [α(G) ⩾ x] < 1
2 and thus Pr [χ(G) ⩾ k] >

1
2 . However, when x = n

k
, we need p = Ω

(
logn
n

)
, which is in contradic-

tion with the condition p = O
( 1

2
)
we yield in the first part. □

As stated above, the simple application of the probabilistic method fails
since we cannot satisfy p = O

( 1
2
)
and p = Ω

(
logn
n

)
at the same time. To

fix the problem, we need the technique of alteration.

A revised proof of Theorem 3. Instead of requiring Pr [X > 0] < 1
2 in

the first part proof, we choose p = log2 n
n

. Then E [X] ⩽ (np)ℓ+1 =

(logn)2ℓ+2 = o(n). Therefore, by the Markov’s inequality,

Pr
[
X ⩾ n

2

]
⩽ E [X]

n
2

<
1
2 .
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Note that this choice of p satisfies the second condition. We can find a
graph G with α(G) ⩽ n

2k and the number of cycles shorter than ℓ is less
than n

2 . Then we construct a G ′ from G by breaking the short cycles in G.
We remove one vertex from each cycle shorter than ℓ in G. Then χ(G ′) ⩾

n
2α(G′) ⩾ k since G ′ contains more than n

2 vertices and α(G ′) ⩽ α(G).
Therefore, such G ′ satisfies girth(G ′) ⩾ ℓ and χ(G ′) ⩾ k. □

2 Second-Moment Method

Let {Xn}n∈N be a set of random variables where each Xn ∈ N. If we want to
show Pr [Xn = 0] n→∞−→ 1, we only need to prove E [Xn]

n→∞−→ 0 since

Pr [Xn > 0] = Pr [Xn ⩾ 1] ⩽ E [Xn] �

by the Markov’s inequality. Conversely, can we yield Pr [Xn > 0] → 1
only from E [Xn] → ∞? The answer is no.3 We need more information 3 A counterexample is

Xn =

{
0, w.p. 1 − 1

n ;
n2, w.p. 1

n .

In this case, E [Xn] = n → ∞ while
Pr [Xn > 0] = 1

n → 0.

about how Xn is concentrated to its expectation. To this end, we look at its
variance, or equivalently its second moment.

Theorem 4 (Chebyshev’s Inequality)

∀a > 0, Pr [|X− E [X]| ⩾ a] ⩽ Var [X]
a

.

Proof. The proof is a direct application of the Markov’s inequality:

Pr [|X− E [X]| ⩾ a] = Pr
[
(X− E [X])2 ⩾ a2

]
⩽

E
[
(X− E [X])2

]
a2 =

Var [X]
a2 .

□
Equipped with the Chebyshev’s inequality, we have

Pr [Xn = 0] ⩽ Pr [|Xn − E [Xn]| ⩾ E [Xn]] ⩽
Var [Xn]

(E [Xn])
2 .

Therefore, if we want to show Pr [Xn = 0] → 0, we only need to show that
E
[
X2
n

]
= (1 + o(1)) (E [Xn])

2.

Then we introduce two applications of the second moment method.

2.1 Threshold Behavior

Consider the Erdős-Rényi model G(n,p(n)) where p(n) : N → [0, 1]. A
graph property P is said to establish threshold behavior if ∃r : N → [0, 1]
such that

• if p(n) ≪ r(n), PrG∼G(n,p(n)) [G satisfies P] n→∞−→ 0;

• if p(n) ≫ r(n), PrG∼G(n,p(n)) [G satisfies P] n→∞−→ 1.
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We can find a threshold function for any monotone property4. Theorem 5 is 4 We say a graph property P is monotone
if a subgraph of G satisfying P implies G
satisfying P.

an example where we use the second moment method to prove the thresh-
old behavior.

Theorem 5 The property “G contains a 4-clique” has a threshold function
n− 2

3 .

Proof. Let X be the number of 4-cliques in G. If p(n) ≪ n− 2
3 , by the

Markov’s inequality,

PrG∼G(n,p(n)) [G contains a 4-clique] = Pr [X ⩾ 1] ⩽ E [X] .

For S ⊆
(
[n]
4
)
, let XS = 1[S is a clique]. Then

E [X] = E

 ∑
S⊆([n]

4 )

Xs

 =

(
n

4

)
· p6 ⩽ n4p6 = o(1).

If p(n) ≫ n− 2
3 , by the Chebyshev’s inequality,

Pr [X = 0] ⩽ Pr [|X− E [X]| ⩾ E [X]] ⩽ Var [X]
(E [X])2 =

E
[
X2]− (E [X])2

(E [X])2 .

Note that

E
[
X2]− (E [X])2 = E


 ∑

S⊆([n]
4 )

Xs


2−

E

 ∑
S⊆([n]

4 )

Xs




2

= 2
∑
S ̸=T

E [XSXT ] +
∑
S

E
[
X2
S

]
− 2

∑
S ̸=T

E [XS]E [XT ] −
∑
S

(E [Xs])
2

= 2
∑

|S∩T |=2

(E [XSXT ] − E [XS]E [XT ]) + 2
∑

S∩T=3
(E [XSXT ] − E [XS]E [XT ])

+
∑
S

(
E
[
X2
S

]
− (E [XS])

2
)

⩽ 2
∑

|S∩T |=2

E [XSXT ] + 2
∑

S∩T=3
E [XSXT ] +

∑
S

E
[
X2
S

]
. S T

|S∩ T | = 2

S T

|S∩ T | = 3

As the figure shows, when |S ∩ T | = 2, XS = XT = 1 iff the 11 edges are
all included. Therefore, E [XSXT ] = Pr [XS = 1 ∧ XT = 1] = p11. Similarly,
when |S ∩ T | = 3, E [XSXT ] = Pr [XS = 1 ∧ XT = 1] = p9. Thus,

E
[
X2]− (E [X])2 ⩽ 2

∑
|S∩T |=2

E [XSXT ] + 2
∑

S∩T=3
E [XSXT ] +

∑
S

E
[
X2
S

]
= 2

(
n

2

)(
n− 2

2

)(
n− 4

2

)
p11 + 2

(
n

3

)(
n− 3

1

)(
n− 4

1

)
p9

+

(
n

4

)
p6

⩽ n6p11 + n5p9 + n4p6 = o((E [X])2).

This indicates Pr [G contains a 4-clique] → 1 when p(n) ≫ n− 2
3 .

□
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2.2 Weierstrass Approximation Theorem

Recall that we have learnt in the mathematical analysis that any continuous
function on a closed interval can be approximated as closely as desired by a
polynomial function. This can be proved using the second moment method.

Theorem 6 (Weierstrass Approximation Theorem) Let f : [0, 1] → [−1, 1]
be a continuous function. For any ε > 0, there exists a polynomial p such that
∀x ∈ [0, 1], |p(x) − f(x)| ⩽ ε.

Proof. Consider a random variable Y ∼ Bin(n, x). We have E [Y] = nx

and Var [Y] = x(1 − x)n ⩽ n
4 . By the Chebyshev’s inequality,

Pr
[∣∣∣∣Yn − x

∣∣∣∣ ⩾ n− 1
3

]
= Pr

[
|Y − nx| ⩾ n

2
3

]
⩽ n− 1

3

4 .

-1

1 f

1

0
n

1
n

2
n

· · · · · ·
We use the weighted average of discrete values to get an approximation

of f. Let Pn(x) =
∑n

i=0 Ei(x) · f
(
i
n

)
where Ei(x) =

(
n
i

)
xi(1 − x)n−i =

Pr [Y = i]. Note that Ei(x) is large when x is close to i
n
and for those i that

i
n
is far from x,

∑
i Pr [Y = i] =

∑
i Ei(x) is small. For any x ∈ [0, 1],

|Pn(x) − f(x)| ⩽
n∑

i=1
Ei(x)

∣∣∣∣f( i

n

)
− f(x)

∣∣∣∣
=

∑
i : |i−nx|⩽n

2
3

Ei(x)

∣∣∣∣f( i

n

)
− f(x)

∣∣∣∣
︸ ︷︷ ︸

A

+
∑

i : |i−nx|>n
2
3

Ei(x)

∣∣∣∣f( i

n

)
− f(x)

∣∣∣∣
︸ ︷︷ ︸

B

.

Since f is continuous, there exists δ such that ∀|x− y| < δ, |f(x) − f(y)| <
ε
2 . With n− 1

3 < δ, we have A ⩽ ε
2 . Moreover, with n− 1

3 < ε, B ⩽
2
∑

i : |i−nx|>n
2
3
Ei(x) ⩽ n− 1

3
2 ⩽ ε

2 . Therefore, choosing n ⩾ max
{ 1

ε3 , 1
δ3

}
,

we have |Pn(x) − f(x)| ⩽ ε for any x ∈ [0, 1].
□
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