[CS1961: Lecture 10] Girth and Chromatic Number, Second-Moment Method

Instructor: Chihao Zhang;

Scribed by Haosong Liu, Shuangcheng Liu, Yuxiao Yang, Yuchen He

1 Girth and Graph Coloring

Definition 1 (Girth) Given an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, the girth of G is the length of the shortest cycle in G. Specifically, when G does not contain any cycle, i.e., G is a forest, its girth is ∞.

For example, the girth of a bipartite graph must be a even number no less than 4.

Girth reflects the connectivity of G in a sense. Intuitively, the denser G is, the smaller girth (G) might be.

Definition 2 (Chromatic Number) The chromatic number of a graph $\mathrm{G}=$ (V, E) is defined as $\chi(\mathrm{G})=\min \{\mathrm{q} \in \mathbb{N} \mid \mathrm{G}$ has a proper q -coloring $\} .{ }^{1}$

Denser graphs tend to have larger chromatic number. The chromatic number of a complete graph $\chi\left(K_{n}\right)$ is n and the chromatic number of a tree is at most 2 . However, this intuition is not generally correct. For example, the chromatic number of a bipartite graph is 2 while bipartite graphs can be very dense. In fact, Erdős showed that there exists graph with arbitrarily large chromatic number and large girth.

Theorem 3 (Erdős,1959) For any $k, \ell \in \mathbb{N}$, there exists a graph G with $\operatorname{girth}(\mathrm{G}) \geqslant \ell$ and $\chi(\mathrm{G}) \geqslant \mathrm{k}$.

A tentative proof of Theorem 3.

We prove the theorem using probabilistic method by drawing graphs from $G \sim G(n, p)$ with appropriate $p .{ }^{2}$ To prove the existence of a graph with desired property, we can turn to prove that there are respectively more than half graphs with $\operatorname{girth}(G) \geqslant \ell$ and with $\chi(G) \geqslant k$.

We compute the probability of G having each of the two properties respectively.

For the first part, we want to choose a p such that with probability larger than $\frac{1}{2}, \operatorname{girth}(G) \geqslant \ell$. Let X be the number of cycles with length no larger

${ }^{1}$ A proper q -coloring means we color each vertex with one of the q colors while guaranteeing no monochromatic edges.
${ }^{2}$ In the Erdős-Rényi random graph model $\mathrm{G}(\mathrm{n}, \mathrm{p})$, a graph with n vertices is constructed by including each edge with probability p independently. The graph G tends to be dense when p is large and tends to be sparse for smaller p.
than ℓ in G. Then

$$
\begin{aligned}
\mathbf{E}[\mathrm{X}] & =\mathbf{E}\left[\sum_{i=0}^{\ell} \sum_{\left(v_{1}, v_{2}, \cdots, v_{i}\right)} \mathbf{1}\left[\left(v_{1}, v_{2}, \cdots, v_{i}\right) \text { is a cycle }\right]\right] \\
& =\sum_{i=0}^{\ell} \sum_{\left(v_{1}, v_{2}, \cdots, v_{i}\right)} \operatorname{Pr}\left[\left(v_{1}, v_{2}, \cdots, v_{i}\right) \text { is a cycle }\right] \\
& \stackrel{(1)}{=} \sum_{i=3}^{\ell}\binom{n}{i} \cdot \frac{i!}{2 i} \cdot p^{i} \leqslant \sum_{i=3}^{\ell} \frac{n(n-1)(n-2) \cdots(n-i+1)}{2 i} \cdot p^{i} \\
& \leqslant \sum_{i=3}^{\ell}(n p)^{i} \leqslant(n p)^{\ell+1},
\end{aligned}
$$

where (1) follows from the fact that i vertices can form i ! cycles and each cycle is counted repeatedly for $2 i$ times. By the Markov's inequality,

$$
\operatorname{Pr}[X>0]=\operatorname{Pr}[X \geqslant 1] \leqslant \mathbf{E}[X] \leqslant(n p)^{\ell+1}
$$

We can choose $p=O\left(\frac{1}{n}\right)$ to satisfy the requirement $\operatorname{Pr}[X>0]<\frac{1}{2}$ and consequently we have $\operatorname{Pr}[\operatorname{girth}(\mathrm{G}) \geqslant \ell]>\frac{1}{2}$.

For the second part, we want to choose a p satisfying that with probability larger than $\frac{1}{2}, \chi(G) \geqslant k$. Recall that $\chi(G)=k$ indicates G can be divided into k independent sets. By the pigeonhole principle, there exists an independent set with size no less than $\frac{\mathfrak{n}}{\mathrm{k}}$. Therefore,

$$
\operatorname{Pr}[\chi(G) \leqslant k] \leqslant \operatorname{Pr}\left[\alpha(G) \geqslant \frac{n}{k}\right]
$$

where $\alpha(\mathrm{G})$ is the independent number of G. Note that for any $x \in \mathbb{N}$,

$$
\begin{aligned}
\operatorname{Pr}[\alpha(G) \geqslant x] & \leqslant \operatorname{Pr}\left[\exists S \in\binom{[n]}{x}, S \text { is an independent set }\right] \\
& \leqslant\binom{ n}{x}(1-p)^{\binom{x}{2}} \leqslant n^{x} \cdot e^{\frac{-p x(x-1)}{2}} \\
& =\left(n e^{\frac{-p(x-1)}{2}}\right)^{x} .
\end{aligned}
$$

By choosing $p \geqslant \frac{3}{\chi} \log n$, we have $\operatorname{Pr}[\alpha(G) \geqslant x]<\frac{1}{2}$ and thus $\operatorname{Pr}[\chi(G) \geqslant k]>$ $\frac{1}{2}$. However, when $x=\frac{n}{k}$, we need $p=\Omega\left(\frac{\log n}{n}\right)$, which is in contradiction with the condition $p=O\left(\frac{1}{2}\right)$ we yield in the first part.

As stated above, the simple application of the probabilistic method fails since we cannot satisfy $p=O\left(\frac{1}{2}\right)$ and $p=\Omega\left(\frac{\log n}{n}\right)$ at the same time. To fix the problem, we need the technique of alteration.

A revised proof of Theorem 3. Instead of requiring $\operatorname{Pr}[\mathrm{X}>0]<\frac{1}{2}$ in the first part proof, we choose $p=\frac{\log ^{2} n}{n}$. Then $\mathbf{E}[X] \leqslant(n p)^{\ell+1}=$ $(\log n)^{2 \ell+2}=\mathrm{o}(\mathrm{n})$. Therefore, by the Markov's inequality,

$$
\operatorname{Pr}\left[X \geqslant \frac{n}{2}\right] \leqslant \frac{\mathbf{E}[X]}{\frac{n}{2}}<\frac{1}{2} .
$$

Note that this choice of p satisfies the second condition. We can find a graph G with $\alpha(G) \leqslant \frac{n}{2 k}$ and the number of cycles shorter than ℓ is less than $\frac{n}{2}$. Then we construct a G^{\prime} from G by breaking the short cycles in G. We remove one vertex from each cycle shorter than ℓ in G. Then $\chi\left(G^{\prime}\right) \geqslant$ $\frac{n}{2 \alpha\left(G^{\prime}\right)} \geqslant k$ since G^{\prime} contains more than $\frac{n}{2}$ vertices and $\alpha\left(G^{\prime}\right) \leqslant \alpha(G)$. Therefore, such G^{\prime} satisfies $\operatorname{girth}\left(G^{\prime}\right) \geqslant \ell$ and $\chi\left(G^{\prime}\right) \geqslant k$.

2 Second-Moment Method

Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a set of random variables where each $X_{n} \in \mathbb{N}$. If we want to show $\operatorname{Pr}\left[X_{n}=0\right] \xrightarrow{n \rightarrow \infty} 1$, we only need to prove $\mathbf{E}\left[X_{n}\right] \xrightarrow{n \rightarrow \infty} 0$ since

$$
\operatorname{Pr}\left[X_{n}>0\right]=\operatorname{Pr}\left[X_{n} \geqslant 1\right] \leqslant \mathbf{E}\left[X_{n}\right]
$$

by the Markov's inequality. Conversely, can we yield $\operatorname{Pr}\left[X_{n}>0\right] \rightarrow 1$ only from $\mathbf{E}\left[X_{n}\right] \rightarrow \infty$? The answer is no. ${ }^{3}$ We need more information about how X_{n} is concentrated to its expectation. To this end, we look at its variance, or equivalently its second moment.

Theorem 4 (Chebyshev's Inequality)

$$
\forall a>0, \operatorname{Pr}[|X-\mathbf{E}[X]| \geqslant a] \leqslant \frac{\operatorname{Var}[X]}{a}
$$

Proof. The proof is a direct application of the Markov's inequality:
$\operatorname{Pr}[|X-\mathbf{E}[X]| \geqslant a]=\operatorname{Pr}\left[(X-\mathbf{E}[X])^{2} \geqslant a^{2}\right] \leqslant \frac{\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right]}{a^{2}}=\frac{\operatorname{Var}[X]}{a^{2}}$.

Equipped with the Chebyshev's inequality, we have

$$
\operatorname{Pr}\left[X_{n}=0\right] \leqslant \operatorname{Pr}\left[\left|X_{n}-\mathbf{E}\left[X_{n}\right]\right| \geqslant \mathbf{E}\left[X_{n}\right]\right] \leqslant \frac{\operatorname{Var}\left[X_{n}\right]}{\left(\mathbf{E}\left[X_{n}\right]\right)^{2}}
$$

Therefore, if we want to show $\operatorname{Pr}\left[X_{n}=0\right] \rightarrow 0$, we only need to show that $\mathbf{E}\left[X_{n}^{2}\right]=(1+\mathbf{o}(1))\left(\mathbf{E}\left[X_{n}\right]\right)^{2}$.

Then we introduce two applications of the second moment method.

2.1 Threshold Behavior

Consider the Erdős-Rényi model $G(n, p(n))$ where $p(n): \mathbb{N} \rightarrow[0,1]$. A graph property \mathcal{P} is said to establish threshold behavior if $\exists \mathrm{r}: \mathbb{N} \rightarrow[0,1]$ such that

- if $p(n) \ll r(n), \operatorname{Pr}_{G \sim G(n, p(n))}[G$ satisfies $P] \xrightarrow{n \rightarrow \infty} 0$;
- if $p(n) \gg r(n), \operatorname{Pr}_{G \sim G(n, p(n))}[G$ satisfies $P] \xrightarrow{n \rightarrow \infty} 1$.

We can find a threshold function for any monotone property ${ }^{4}$. Theorem 5 is an example where we use the second moment method to prove the threshold behavior.

Theorem 5 The property " G contains a 4-clique" has a threshold function $n^{-\frac{2}{3}}$.

Proof. Let X be the number of 4 -cliques in G. If $p(n) \ll n^{-\frac{2}{3}}$, by the Markov's inequality,

$$
\operatorname{Pr}_{G \sim G(n, p(n))}[G \text { contains a 4-clique }]=\operatorname{Pr}[X \geqslant 1] \leqslant \mathbf{E}[X] .
$$

For $S \subseteq\binom{[n]}{4}$, let $X_{S}=\mathbf{1}[\mathrm{S}$ is a clique $]$. Then

$$
\mathbf{E}[X]=\mathbf{E}\left[\sum_{S \subseteq\binom{[n]}{4}} X_{s}\right]=\binom{n}{4} \cdot p^{6} \leqslant n^{4} p^{6}=o(1) .
$$

If $p(n) \gg n^{-\frac{2}{3}}$, by the Chebyshev's inequality,

$$
\operatorname{Pr}[X=0] \leqslant \operatorname{Pr}[|X-\mathbf{E}[X]| \geqslant \mathbf{E}[X]] \leqslant \frac{\operatorname{Var}[X]}{(\mathbf{E}[X])^{2}}=\frac{\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}}{(\mathbf{E}[X])^{2}}
$$

Note that

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}= & \mathbf{E}\left[\left(\sum_{\substack{([n]) \\
4 \\
\hline}} X_{S}\right)^{2}\right]-\left(\mathbf{E}\left[\sum_{S \subseteq\binom{[n])}{4}} X_{S}\right]\right)^{2} \\
= & 2 \sum_{S \neq T} \mathbf{E}\left[X_{S} X_{T}\right]+\sum_{S} \mathbf{E}\left[X_{S}^{2}\right]-2 \sum_{S \neq T} \mathbf{E}\left[X_{S}\right] \mathbf{E}\left[X_{T}\right]-\sum_{S}\left(\mathbf{E}\left[X_{S}\right]\right)^{2} \\
= & 2 \sum_{|S \cap T|=2}\left(\mathbf{E}\left[X_{S} X_{T}\right]-\mathbf{E}\left[X_{S}\right] \mathbf{E}\left[X_{T}\right]\right)+2 \sum_{S \cap T=3}\left(\mathbf{E}\left[X_{S} X_{T}\right]-\mathbf{E}\left[X_{S}\right] \mathbf{E}\left[X_{T}\right]\right) \\
& +\sum_{S}\left(\mathbf{E}\left[X_{S}^{2}\right]-\left(\mathbf{E}\left[X_{S}\right]\right)^{2}\right) \\
\leqslant & 2 \sum_{|S \cap T|=2} \mathbf{E}\left[X_{S} X_{T}\right]+2 \sum_{S \cap T=3} \mathbf{E}\left[X_{S} X_{T}\right]+\sum_{S} \mathbf{E}\left[X_{S}^{2}\right] .
\end{aligned}
$$

As the figure shows, when $|S \cap T|=2, X_{S}=X_{T}=1$ iff the 11 edges are all included. Therefore, $E\left[X_{S} X_{T}\right]=\operatorname{Pr}\left[X_{S}=1 \wedge X_{T}=1\right]=p^{11}$. Similarly, when $|S \cap T|=3, E\left[X_{S} X_{T}\right]=\operatorname{Pr}\left[X_{S}=1 \wedge X_{T}=1\right]=p^{9}$. Thus,

$$
\begin{aligned}
\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2} \leqslant & 2 \sum_{|S \cap T|=2} \mathbf{E}\left[X_{S} X_{T}\right]+2 \sum_{S \cap T=3} \mathbf{E}\left[X_{S} X_{T}\right]+\sum_{S} \mathbf{E}\left[X_{S}^{2}\right] \\
= & 2\binom{n}{2}\binom{n-2}{2}\binom{n-4}{2} p^{11}+2\binom{n}{3}\binom{n-3}{1}\binom{n-4}{1} p^{9} \\
& +\binom{n}{4} p^{6} \\
\leqslant & n^{6} p^{11}+n^{5} p^{9}+n^{4} p^{6}=o\left((\mathbf{E}[X])^{2}\right) .
\end{aligned}
$$

$|S \cap T|=2$

$|S \cap T|=3$

This indicates $\operatorname{Pr}\left[G\right.$ contains a 4-clique] $\rightarrow 1$ when $p(n) \gg n^{-\frac{2}{3}}$.

2.2 Weierstrass Approximation Theorem

Recall that we have learnt in the mathematical analysis that any continuous function on a closed interval can be approximated as closely as desired by a polynomial function. This can be proved using the second moment method.

Theorem 6 (Weierstrass Approximation Theorem) Let $\mathrm{f}:[0,1] \rightarrow[-1,1]$ be a continuous function. For any $\varepsilon>0$, there exists a polynomial p such that $\forall x \in[0,1],|p(x)-f(x)| \leqslant \varepsilon$.

Proof. Consider a random variable $\mathrm{Y} \sim \operatorname{Bin}(\mathrm{n}, \mathrm{x})$. We have $\mathbf{E}[\mathrm{Y}]=\mathrm{n} \chi$ and $\operatorname{Var}[Y]=x(1-x) n \leqslant \frac{n}{4}$. By the Chebyshev's inequality,

$$
\operatorname{Pr}\left[\left|\frac{Y}{n}-x\right| \geqslant n^{-\frac{1}{3}}\right]=\operatorname{Pr}\left[|Y-n x| \geqslant n^{\frac{2}{3}}\right] \leqslant \frac{n^{-\frac{1}{3}}}{4}
$$

We use the weighted average of discrete values to get an approximation of f. Let $P_{n}(x)=\sum_{i=0}^{n} E_{i}(x) \cdot f\left(\frac{i}{n}\right)$ where $E_{i}(x)=\binom{n}{i} x^{i}(1-x)^{n-i}=$ $\operatorname{Pr}[Y=i]$. Note that $E_{i}(x)$ is large when x is close to $\frac{i}{n}$ and for those i that $\frac{i}{n}$ is far from $x, \sum_{i} \operatorname{Pr}[Y=i]=\sum_{i} E_{i}(x)$ is small. For any $x \in[0,1]$,

$$
\begin{aligned}
\left|P_{n}(x)-f(x)\right| & \leqslant \sum_{i=1}^{n} E_{i}(x)\left|f\left(\frac{i}{n}\right)-f(x)\right| \\
& =\underbrace{\sum_{i:|i-n x| \leqslant n^{\frac{2}{3}}} E_{i}(x)\left|f\left(\frac{i}{n}\right)-f(x)\right|}_{A}+\underbrace{\sum_{i:|i-n x|>n^{\frac{2}{3}}} E_{i}(x)\left|f\left(\frac{i}{n}\right)-f(x)\right| .}_{B}
\end{aligned}
$$

Since f is continuous, there exists δ such that $\forall|x-y|<\delta,|f(x)-f(y)|<$ $\frac{\varepsilon}{2}$. With $n^{-\frac{1}{3}}<\delta$, we have $A \leqslant \frac{\varepsilon}{2}$. Moreover, with $n^{-\frac{1}{3}}<\varepsilon$, $B \leqslant$ $2 \sum_{i:|i-n x|>n^{\frac{2}{3}}} E_{i}(x) \leqslant \frac{n^{-\frac{1}{3}}}{2} \leqslant \frac{\varepsilon}{2}$. Therefore, choosing $n \geqslant \max \left\{\frac{1}{\varepsilon^{3}}, \frac{1}{\delta^{3}}\right\}$, we have $\left|P_{n}(x)-f(x)\right| \leqslant \varepsilon$ for any $x \in[0,1]$.

