[CS1961: Lecture 10] Girth and Chromatic Number,
Second-Moment Method

Instructor: Chihao Zhang;
Scribed by Haosong Liu, Shuangcheng Liu, Yuxiao Yang, Yuchen
He

1 Girth and Graph Coloring

Definition 1 (Girth) Given an undirected graph G = (V, E), the girth of G is
the length of the shortest cycle in G. Specifically, when G does not contain any
cycle, i.e., G is a forest, its girth is co.

For example, the girth of a bipartite graph must be a even number no less
than 4.
Girth reflects the connectivity of G in a sense. Intuitively, the denser G

is, the smaller girth(G) might be.

Definition 2 (Chromatic Number) The chromatic number of a graph G =
(V,E) is defined as X(G) = min{q € N | G has a proper q-coloring}. !

Denser graphs tend to have larger chromatic number. The chromatic num-
ber of a complete graph x(K;,) is n and the chromatic number of a tree is
at most 2. However, this intuition is not generally correct. For example, the
chromatic number of a bipartite graph is 2 while bipartite graphs can be
very dense. In fact, Erdés showed that there exists graph with arbitrarily

large chromatic number and large girth.

Theorem 3 (Erd6s,1959) Foranyk,{ € N, there exists a graph G with
girth(G) > € and x(G) > k.

A tentative proof of Theorem 3.

We prove the theorem using probabilistic method by drawing graphs
from G ~ G(n,p) with appropriate p. 2 To prove the existence of a graph
with desired property, we can turn to prove that there are respectively more
than half graphs with girth(G) > { and with x(G) > k.

We compute the probability of G having each of the two properties
respectively.

For the first part, we want to choose a p such that with probability larger
than 3, girth(G) > {. Let X be the number of cycles with length no larger

girth(G) =3

girth(G) =4

girth(G) =

! A proper g-coloring means we color
each vertex with one of the q colors while
guaranteeing no monochromatic edges.

*In the Erdds-Rényi random graph model
G (n, p), a graph with n vertices is
constructed by including each edge with
probability p independently. The graph G
tends to be dense when p is large and tends
to be sparse for smaller p.
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where (1) follows from the fact that i vertices can form 1! cycles and each

cycle is counted repeatedly for 2i times. By the Markov’s inequality,
PriX>0=Pr[X>1<E[X < (np).

We can choose p = O(%) to satisfy the requirement Pr [X > 0] < % and
consequently we have Pr [girth(G) > €] > 3.

For the second part, we want to choose a p satisfying that with proba-
bility larger than %, X(G) > k. Recall that x(G) = k indicates G can be
divided into k independent sets. By the pigeonhole principle, there exists an
independent set with size no less than % Therefore,

Prix(G) < Kl < Pr [«(G) > %}

where «(G) is the independent number of G. Note that for any x € N,

Pro(G) > x] < Pr {35 S C;ﬂ) ,S is an independent set]

< <2> (1-p)b) < e

—p(x—1)\X
(e
By choosing p > %logn, we have Pr [a(G) > x] < % and thus Pr [x(G) > k] >

k bl
tion with the condition p = O (%) we yield in the first part. g

1 D .
%. However, when x = &, weneedp = Q (%), which is in contradic-

As stated above, the simple application of the probabilistic method fails

since we cannot satisfy p = O (%) andp = Q (10%) at the same time. To

fix the problem, we need the technique of alteration.

A revised proof of Theorem 3. Instead of requiring Pr [X > 0] < % in

the first part proof, we choose p = @. ThenE[X] < (np)*™! =

(log n)28+2 = o(n). Therefore, by the Markov’s inequality,

Pr [x> 3} < ELX] L
2

2 2
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Note that this choice of p satisfies the second condition. We can find a
graph G with «(G) < 5 and the number of cycles shorter than { is less
than 7. Then we construct a G’ from G by breaking the short cycles in G.
We remove one vertex from each cycle shorter than £ in G. Then x(G’) >
% > k since G’ contains more than % vertices and «(G’) < «(G).

2 2
Therefore, such G’ satisfies girth(G’) > ¢ and x(G’) > k. d

2  Second-Moment Method

Let {X,1},, i be a set of random variables where each X, € N. If we want to
show Pr [X,, = 0] N2, we only need to prove E [X;,] 200 since

Pr [Xn > 0] =Pr [Xn > ]-] < E[Xn]

by the Markov’s inequality. Conversely, can we yield Pr [X;, > 0] — 1

only from E [X,,] — 00? The answer is no.> We need more information 3 A counterexample is

about how X, is concentrated to its expectation. To this end, we look at its 0 wp. 1—1;
_ ) P n

variance, or equivalently its second moment. " N2, wp 1

In this case, E [X

Theorem 4 (Chebyshev’s Inequality) PriX, > 0] —

33

Vv
Va>0 PriX—E[X|>a < aZ[X].

Proof.  The proof is a direct application of the Markov’s inequality:

E|(X-EX)?
Pr(X—E[X]| > al =Pr (X—E[X})2>a2] < { } _Var[X].

a? - a?
(]
Equipped with the Chebyshev’s inequality, we have
Var [X,,]
PriX, =01 <Pr(Xy —EXp ]| > EXp ]l € ——-
" R T (EX)?

Therefore, if we want to show Pr [X;, = 0] — 0, we only need to show that
E[X2] = (1+0(1) (E X))

Then we introduce two applications of the second moment method.

2.1 Threshold Behavior

Consider the Erdés-Rényi model G(n,p(n)) where p(n): N — [0,1]. A
graph property P is said to establish threshold behavior if 3r: N — [0, 1]
such that

n—o00

. ifp(n) < r(n), Prg.gn,pmn)) [G satisfies P] —" 0;

n—oo

o if p(n) > r(n), Prg.gm,pmn)) [G satisfies P] —" 1.
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We can find a threshold function for any monotone property?. Theorem 5 is “ We say a graph property P is monotone
if a subgraph of G satisfying P implies G

an example where we use the second moment method to prove the thresh- U0
satisfying P.

old behavior.
Theorem 5 The property “G contains a 4-clique” has a threshold function
n-t
Proof.  Let X be the number of 4-cliques in G. If p(n) <« ns, by the
Markov’s inequality,

Prg_G(n,p(n)) [G contains a 4-clique] = Pr[X > 1] < E[X].

For S C ([Z]), let Xs = 1[S is a clique]. Then

EX]=E Z Xs :(Z>-p6<n4p6:o(1).
sc()

Ifp(n) > n—3, by the Chebyshev’s inequality,

21 2
PriX =0 < PriX—BX| > B < YXX _BX-(EX)

T(ENX) S (BIX)?
Note that
2 2
E[X*] - (EX])>=E Z X —|E Z X
sc() sc()
=2) EXsXrl+) E[X}]—2) EXsJEX{I—) (EIX])?
S#T S S#T S
=2 ) (EXsXi]-BXsJEXt])+2 ) (EXsXt]—EXs]EXr])
|SNT|=2 SNT=3

+Y (E [X2] - (B [xs])z)

<2 Z E [XsX7]+2 Z E[XSXTH—ZE[X%]. 4\
|ISNT|=2 SNT=3 S
As the figure shows, when [S N T| = 2, Xs = X1 = 1 iff the 11 edges are ' \

all included. Therefore, E [XsX7] = Pr[Xs = 1 A Xy = 1] = p!’. Similarly, ISAT| =2
when [SNT| =3, E[XsX7] = Pr[Xs = 1 A Xt = 1] = p°. Thus,

EX]—(BX)’ <2 ) EXsXr+2 ) EXsXi+) E[X}
[SNT|=2 SNT=3 S

=)L) ) s

<np!t +n’p? +n'pt = o((E[X])?).

2
3

This indicates Pr [G contains a 4-clique] — 1 when p(n) > n
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2.2 Weierstrass Approximation Theorem

Recall that we have learnt in the mathematical analysis that any continuous
function on a closed interval can be approximated as closely as desired by a
polynomial function. This can be proved using the second moment method.

Theorem 6 (Weierstrass Approximation Theorem) Letf: [0,1] — [—1,1]
be a continuous function. For any ¢ > 0, there exists a polynomial p such that
Vx € [0, 1], [p(x) — f(x)| < e.

Proof.  Consider a random variable Y ~ Bin(n, x). We have E[Y] = nx
and Var [Y] = x(1 —x)n < F. By the Chebyshev’s inequality,

_1
g} n s
3 .

<
4

> n_é} =Pr [IY—nx\ >n

2lo
2l
2o

of f.Let Pn(x) = Y I' o Ei(x) - f (1) where E(x) = (T)x'(1 —x)" ! =
Pr [Y = i]. Note that E;(x) is large when x is close to ﬁ and for those 1i that
% is far fromx, ) ; Pr[Y =1] = ) ; Ei(x) is small. For any x € [0, 1], -1

(1) -0
() -0

A B

We use the weighted average of discrete values to get an approximation \/I)/ -

Pn(x) — f(x) < D Ei(x)

i=1

= Z Ei(x)

2
3

+ > EX

2
i: [i—nx|>n3

i [i—nx|<n

Since f is continuous, there exists & such that V|x — y| < §, |f(x) — f(y)| <
5. With n—s < 6, wehave A < 5. Moreover, with n s < ¢ B <
1

2Zi: Iifnx\>n% )
we have [P, (x) — f(x)| < € for any x € [0, 1].

Filx) < 22 < 5. Therefore, choosing n > max {e%, 5%},

O
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