[CS1961: Lecture 15] Random Walk, Cheeger's Inequality

1 Markov Chain

In this lecture, we will introduce another convenient normalization of weighted adjacency matrix. This can be best described as a random walk on the graph. We will introduce some basic terminologies on random walk and Markov chains.

1.1 Random Walk on Undirected Graph

Consider a random walk on the following undirected graph. We start at $X_{0}=1$ and move to a neighbor of the current vertex u.a.r. at each step. The distribution of the next position X_{t+1} is determined only by the current state. This random walk is a simple Markov chain.

Definition 1 (Markov Chain). A sequence of random variables $X_{0}, X_{1}, \ldots, X_{t}, X_{t+1}, \ldots$ is a Markov chain if for any $t \in \mathbb{N}$ and any states $j_{0}, j_{1}, \ldots, j_{t}, j$,

$$
\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=j_{t}, X_{t-1}=j_{t-1}, \ldots, X_{0}=j_{0}\right]=\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=j_{t}\right] .
$$

A Markov chain can be characterized by a matrix $P=\left(p_{i j}\right)_{i, j \in \Omega} \in$ $[0,1]^{\Omega \times \Omega}$ where $p_{i j}=\operatorname{Pr}\left[X_{t+1}=j \mid X_{t}=i\right]$. The transition matrix P is a stochastic matrix since $\sum_{j \in \Omega} p_{i j}=1$ for all $i \in \Omega$. For example, in the above random walk, we have $\Omega=[4]$ and

$$
p_{i j}=\left\{\begin{array}{ll}
0, & \text { if } i \nsim j \\
\frac{1}{\operatorname{deg}(i)}, & \text { if } i \sim j
\end{array} .\right.
$$

Sometimes we will simply denote the transition matrix P as the Markov chain for convenience.

Let $A_{G}=\left(w_{i j}\right)_{i, j \in[n]}$ be a weighted graph where every $w_{i j} \geq 0$. We can normalize it into a random walk P_{G} :

- For every $i \in[n]$, let $w_{i}=\sum_{j} w_{i j}$;
- For every $i, j \in[n]$, let $P_{G}(i, j)=\frac{w_{i j}}{w_{i}}$.

We also define a distribution π over $[n]$ as $\pi(i)=\frac{w_{i}}{\sum_{j \in[n]} w_{j}}$.
As a result, the P_{G} constructed above satisfies that for every $i, j \in[n]$,

$$
\pi(i) \cdot P_{G}(i, j)=\pi(j) \cdot P_{G}(j, i)\left(=w_{i j}\right) .
$$

This is called reversibility of P_{G}. The distribution π is called a stationary distribution of P_{G}.

For example, in the following graph, we have $P_{G}(1,2)=\frac{1}{1+2+3}=\frac{1}{6}$, $P_{G}(1,3)=\frac{1}{3}$ and $P_{G}(1,4)=\frac{1}{2}$.

2 The Spectrum of Markov Chains

2.1 Spectral Decomposition

Another advantage to use reversible chains is that their transition matrices are symmetric in some sense. Suppose P is reversible with respect to π. Let $\Pi=\operatorname{diag}(\pi)$ be the diagonal matrix with $\Pi(i, i)=\pi(i)$. Define $Q=$ $\Pi^{\frac{1}{2}} P \Pi^{-\frac{1}{2}}$, then we can verify that Q is symmetric:

$$
Q(i, j)=\pi(i)^{\frac{1}{2}} P(i, j) \pi(j)^{-\frac{1}{2}}=\pi(j)^{\frac{1}{2}} P(j, i) \pi(i)^{-\frac{1}{2}}=Q(j, i) .
$$

So we can apply the spectral decomposition theorem for Q, which yields

$$
Q=\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}
$$

where $\lambda_{1} \geq \cdots \geq \lambda_{n}$ are eigenvalues of Q with corresponding orthonormal eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. If we let $\mathbf{v}_{i}:=\Pi^{-\frac{1}{2}} \mathbf{u}_{i}$, then the above is equivalent to

$$
P=\sum_{i=1}^{n} \lambda_{i} \Pi^{-\frac{1}{2}} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \Pi^{\frac{1}{2}}=\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\top} \Pi
$$

We claim that $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of P with corresponding eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$. To see this, we have for any $j \in[n]$:

$$
\begin{aligned}
P \mathbf{v}_{j} & =\sum_{i=1}^{n} \lambda_{i} \Pi^{-\frac{1}{2}} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \Pi^{\frac{1}{2}} \mathbf{v}_{j} \\
& =\sum_{i=1}^{n} \lambda_{i} \Pi^{-\frac{1}{2}} \mathbf{u}_{i} \mathbf{u}_{i}^{\top} \Pi^{\frac{1}{2}} \Pi^{-\frac{1}{2}} \mathbf{u}_{j} \\
& =\lambda_{j} \mathbf{v}_{j}
\end{aligned}
$$

Everything looks nice if we equip \mathbb{R}^{n} with the inner product $\langle\cdot, \cdot\rangle_{\Pi}$ defined as $\langle\mathbf{x}, \mathbf{y}\rangle_{\Pi}=\mathbf{x}^{\top} \Pi \mathbf{y}=\sum_{i=1}^{n} \pi(i) \mathbf{x}(i) \mathbf{y}(i)$. It is clear that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are orthonormal with respect to the inner product:

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle_{\Pi}= \begin{cases}0, & \text { if } i \neq j \\ 1, & \text { if } i=j\end{cases}
$$

2.2 Graph Expansion

We want to measure the connectivity of a graph in terms of its spectrum. Let $G=(V, E)$ be a weighted graph with nonnegative weights $\left(w_{i j}\right)_{i, j \in[n]}$.
For any $S \subseteq V$, we define the expansion of S as

$$
Q(S, \bar{S}):=\sum_{i \in S, j \in V \backslash S} \pi(i) P(i, j) .
$$

Furthermore, we define the expansion of S as

$$
\Phi(S)=\frac{Q(S, \bar{S})}{\pi(S)}
$$

where $\pi(S)=\sum_{i \in S} \pi(i)$. Suppose $X_{t} \sim \pi$, then $\Phi(S)=\operatorname{Pr}\left[X_{t+1} \notin S \mid X_{t} \in S\right]$, which is the probability of escaping S. Equivalently, it is the ratio between the weight of edges connecting S and \bar{S} and the weight of edges incident to S.

The expansion of G is the smallest $\Phi(S)$ over all S with measure at most $1 / 2$, i.e., $\Phi(G)=\min _{S \subseteq V: \pi(S) \leq \frac{1}{2}} \Phi(S)$. We have the following celebrated connection between $\Phi(G)$ and λ_{2}.

Theorem 2 (Cheeger's Inequality). $\frac{1-\lambda_{2}}{2} \leq \Phi(P) \leq \sqrt{2\left(1-\lambda_{2}\right)}$.
Moreover, λ_{2} also carries the information on how to partition G into the hardest (S, \bar{S}).

3 Cheeger's Inequality

Now we prove Cheeger's ineqaulity. We present the proof in terms of a reversible Markov chain P with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Consider the Laplacian matrix $L=I-P$ with eigenvalues $\gamma_{1} \leq \gamma_{2} \leq \cdots \leq \gamma_{n}$. We have shown that $\gamma_{1}=0$ and $\gamma_{i}=1-\lambda_{i}$ for all $i \in[n]$. Then the Cheeger's inequality can be written in terms of γ_{2}.
Theorem 3 (Cheeger's Inequality). $\frac{\gamma_{2}}{2} \leq \Phi(P) \leq \sqrt{2 \gamma_{2}}$.
We prove $\frac{\gamma_{2}}{2} \leq \Phi(P)(1)$ and $\Phi(P) \leq \sqrt{2 \gamma_{2}}$ (2) respectively.

Proof of ${ }^{(1)}$. We relate $\Phi(P)$ with γ_{2} using the variational characterization.
Note that

$$
\gamma_{2}=\min _{\substack{U \leq \mathbb{R}^{n} \\ \operatorname{dim}(U)=2}} \max _{\mathbf{x} \in U \backslash\{0\}} \frac{\langle\mathbf{x}, L \mathbf{x}\rangle_{\Pi}}{\langle\mathbf{x}, \mathbf{x}\rangle_{\Pi}} .
$$

Let S be the subset of V such that $\Phi(P)=\max \{\Phi(S), \Phi(\bar{S})\}$. Let $U=$ $\operatorname{span}\left(\mathbf{1}_{S}, \mathbf{1}_{\bar{S}}\right)$. For any $\mathbf{x} \in U$, we can write \mathbf{x} as $a \mathbf{1}_{S}+b \mathbf{1}_{\bar{S}}$ for some constants a and b. Then

$$
\begin{aligned}
\frac{\langle\mathbf{x}, L \mathbf{x}\rangle_{\Pi}}{\langle\mathbf{x}, \mathbf{x}\rangle_{\Pi}} & =\frac{\sum_{\{i, j\} \in E} \pi(i) P(i, j)\left(x_{i}-x_{j}\right)^{2}}{\sum_{i} \pi(i) x_{i}^{2}}=\frac{\sum_{i \in S, j \in \bar{S}} \pi(i) P(i, j)(a-b)^{2}}{\pi(S) a^{2}+\pi(\bar{S}) b^{2}} \\
& \leq \frac{2 \sum_{i \in S, j \in \bar{S}} \pi(i) P(i, j)\left(a^{2}+b^{2}\right)}{\pi(S) a^{2}+\pi(\bar{S}) b^{2}} \\
& \leq 2 \max \left\{\frac{\sum_{i \in S, j \in \bar{S}} \pi(i) P(i, j)}{\pi(S)}, \frac{\sum_{i \in S, j \in \bar{S}} \pi(i) P(i, j)}{\pi(\bar{S})}\right\}=2 \Phi(P)
\end{aligned}
$$

where the second inequality follows from the fact that for positive real numbers $z_{1}, z_{2}, y_{1}, y_{2}, \frac{z_{1}+z_{2}}{y_{1}+y_{2}} \leq \max \left\{\frac{z_{1}}{y_{1}}, \frac{z_{2}}{y_{2}}\right\}$.

By definition, $\Phi(P)=\min \underset{\pi\left(S \subseteq V \leq \frac{1}{S}\right.}{ } \Phi(S)$. To prove (2), we only need to find a $S \subseteq V$ such that $\Phi(S) \leq \sqrt{2 \gamma_{2}}$. Such S can be generated using the Fiedler's algorithm. With input $\mathbf{x} \in \mathbb{R}^{V}$:

- sort V according to \mathbf{x}, get $V=\left\{v_{1}, \ldots, v_{n}\right\}$ where $\mathbf{x}\left(v_{1}\right) \leq \mathbf{x}\left(v_{2}\right) \leq \mathbf{x}\left(v_{n}\right)$;
- for each $i \in[n]$, let $S_{i}=\left\{v_{1}, \ldots, v_{i}\right\}$;
- return the S_{i} with the minimum $\Phi\left(S_{i}\right) \vee \Phi\left(\bar{S}_{i}\right) .{ }^{1}$
${ }^{1} a \vee b$ means $\max \{a, b\}$.
Theorem 4. For any $\mathbf{x} \perp$ 1, assume the Fiedler's algorithm returns S with input \mathbf{x}. Then $\Phi(S) \leq \sqrt{2 R_{L}(\mathrm{x})}$.

With Theorem 4, the proof of (2) is straightforward. Note that \mathbf{v}_{2}, the eigenvector of L corresponding to eigenvalue γ_{2}, is the minimizer of $R_{L}(\mathbf{x})$ on the constraint that $\mathbf{x} \perp \mathbf{1}$. We can divide the graph into different blocks where each block is well connected inside. Intuitively, to get smaller $\sum_{\{i, j\} \in E} \pi(i) P(i, j)\left(x_{i}-x_{j}\right)^{2}$, we tend to assign the same value to the x_{i} 's in the same block. The Fiedler's algorithm will return a partition that divides the blocks into two groups. This indicates that \mathbf{v}_{2} contains the information to find the bottleneck of the graph.

Proof of (2). Run the Fiedler's algorithm with input $\mathbf{x}=\mathbf{v}_{2}$ and get output S. By Theorem $4, \Phi(S) \leq \sqrt{2 R_{L}\left(\mathrm{v}_{2}\right)}=\sqrt{2 \gamma_{2}}$.

It remains to prove Theorem 4.
Proof of Theorem 4. Input \mathbf{x} and run the Fiedler's algorithm. W.l.o.g., assume $x_{1} \leq \cdots \leq x_{n}$.

Define ℓ be the minimum k such that $\sum_{i=1}^{k} \pi_{i} \geq \frac{1}{2}$. Let $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)=$ $\mathbf{x}-x_{\ell} \cdot \mathbf{1}$. That is, $y_{i}=x_{i}-x_{\ell}$ for all $i \in[n]$. Rescale \mathbf{y} such that $y_{1}^{2}+y_{n}^{2}=1$. We

randomly pick $t \in\left[y_{1}, y_{n}\right]$ with density $2|t|$ and set $S_{t}=\left\{i \in[n] \mid y_{i} \leq t\right\}$.
Then

$$
\max \left\{\Phi\left(S_{t}\right), \Phi\left(\bar{S}_{t}\right)\right\}=\frac{\sum_{i \in S_{t}, j \in \bar{S}_{t}} \pi(i) P(i, j)}{\min \left\{\pi\left(S_{t}\right), \pi\left(\bar{S}_{t}\right)\right\}}
$$

Let $A:=\sum_{i \in S_{t}, j \in \bar{S}_{t}} \pi(i) P(i, j)$ and $B:=\min \left\{\pi\left(S_{t}\right), \pi\left(\bar{S}_{t}\right)\right\}$. We claim that $\frac{\mathrm{E}[A]}{\mathrm{E}[B]} \leq \sqrt{2 R_{L}(\mathrm{x})}$.

By definition,

$$
\begin{equation*}
\mathrm{E}[A]=\sum_{\substack{\{i, j\} \in E \\ i<j}} \pi(i) P(i, j) \operatorname{Pr}\left[i \in S_{t}, j \in \bar{S}_{t}\right] . \tag{1}
\end{equation*}
$$

Note that $\operatorname{Pr}\left[i \in S_{t}, j \in \bar{S}_{t}\right]$ is the probability that $t \in\left[y_{i}, y_{j}\right]$, which can be calculated directly by integration:

$$
\begin{align*}
\text { Equation }(1) & =\sum_{\substack{\{i, j\} \in E \\
i<j}} \pi(i) P(i, j) \int_{y_{i}}^{y_{j}} 2|t| \mathrm{d} t \\
& =\sum_{\substack{\{i, j\} \in E \\
i<j}} \pi(i) P(i, j)\left(\operatorname{sgn}\left(y_{j}\right) y_{j}^{2}-\operatorname{sgn}\left(y_{i}\right) y_{i}^{2}\right) \\
& \leq \sum_{\substack{\{i, j\} \in E \\
i<j}} \pi(i) P(i, j)\left(\left|y_{i}\right|+\left|y_{j}\right|\right)\left(y_{j}-y_{i}\right) \\
& =\sum_{\substack{\{i, j\} \in E \\
i<j}}(\pi(i) P(i, j))^{\frac{1}{2}}\left(\left|y_{i}\right|+\left|y_{j}\right|\right) \cdot(\pi(i) P(i, j))^{\frac{1}{2}}\left(y_{j}-y_{i}\right) . \tag{2}
\end{align*}
$$

By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\text { Equation }(2) & \leq \sqrt{\sum_{\substack{\{i, j\} \in E \\
i<j}} \pi(i) P(i, j)\left(\left|y_{i}\right|+\left|y_{j}\right|\right)^{2}} \cdot \sqrt{\sum_{\substack{i, j, j\} \in E \\
i<j}} \pi(i) P(i, j)\left(y_{j}-y_{i}\right)^{2}} \\
& \leq \sqrt{2 \sum_{\substack{\{i, j\} \in E \\
i<j}} \pi(i) P(i, j)\left(y_{i}^{2}+y_{j}^{2}\right)} \cdot \sqrt{\langle\mathbf{y}, L \mathbf{y}\rangle_{\Pi}} \\
& =\sqrt{2\langle\mathbf{y}, \mathbf{y}\rangle_{\Pi}} \cdot \sqrt{\langle\mathbf{y}, L \mathbf{y}\rangle_{\Pi}}
\end{aligned}
$$

Recall that ℓ is a middle line of π. Therefore, if $t<0, \pi\left(S_{t}\right) \leq \pi\left(\bar{S}_{t}\right)$ and otherwise $\pi\left(S_{t}\right)>\pi\left(\bar{S}_{t}\right)$. Then we have

$$
\mathbf{E}[B]=\underbrace{\operatorname{Pr}[t<0] \mathbf{E}\left[\pi\left(S_{t}\right) \mid t<0\right]}_{(3)}+\underbrace{\operatorname{Pr}[t \geq 0] \mathbf{E}\left[\pi\left(\bar{S}_{t}\right) \mid t \geq 0\right]}_{(4)}
$$

Note that

$$
\begin{aligned}
(3) & =\operatorname{Pr}[t<0] \sum_{i=1}^{\ell-1} \pi(i) \operatorname{Pr}\left[i \in S_{t} \mid t<0\right] \\
& =\sum_{i=1}^{\ell-1} \pi(i) \int_{y_{i}}^{0} 2|t| \mathrm{d} t=\sum_{i=1}^{\ell-1} \pi(i) y_{i}^{2} .
\end{aligned}
$$

Similarly, (4) $=\sum_{i=\ell}^{n} \pi(i) y_{i}^{2}$. Summing up the two terms, we have $\mathbf{E}[B]=$ $\sum_{i=1}^{n} \pi(i) y_{i}^{2}=\langle\mathbf{y}, \mathbf{y}\rangle_{\Pi}$. Therefore,

$$
\frac{\mathbf{E}[A]}{\mathrm{E}[B]} \leq \sqrt{\frac{2\langle\mathbf{y}, L \mathbf{y}\rangle_{\Pi}}{\langle\mathbf{y}, \mathbf{y}\rangle_{\Pi}}}=\sqrt{2 R_{L}(\mathbf{y})}
$$

Since y is obtained by adding a constant offset to x and $x \perp 1$, we have $\langle\mathbf{y}, \mathbf{y}\rangle_{\Pi} \geq\langle\mathbf{x}, \mathbf{x}\rangle_{\Pi}$ and $\langle\mathbf{y}, L \mathbf{y}\rangle_{\Pi}=\langle\mathbf{x}, L \mathbf{x}\rangle_{\Pi}$. Thus

$$
\frac{\mathrm{E}[A]}{\mathrm{E}[B]} \leq \sqrt{2 R_{L}(\mathrm{y})} \leq \sqrt{2 R_{L}(\mathrm{x})}
$$

or equivalently

$$
\mathrm{E}\left[A-B \sqrt{2 R_{L}(\mathbf{x})}\right] \leq 0
$$

Therefore, the probability of choosing $t \in\left[y_{1}, y_{n}\right]$ such that $A-B \sqrt{2 R_{L}(\mathbf{x})} \leq$ 0 is nonzero. This proves the existence of S_{t} that $\max \left\{\Phi\left(S_{t}\right), \Phi\left(\bar{S}_{t}\right)\right\} \leq$ $\sqrt{2 R_{L}(\mathrm{x})}$ and thus indicates the correctness of Theorem 4.

