
[CS1961: Lecture 15] Random Walk, Cheeger’s In-
equality

1 Markov Chain

In this lecture, we will introduce another convenient normalization of
weighted adjacency matrix. This can be best described as a random walk on
the graph. We will introduce some basic terminologies on random walk and
Markov chains.

1.1 Random Walk on Undirected Graph

Consider a random walk on the following undirected graph. We start at
𝑋0 = 1 and move to a neighbor of the current vertex u.a.r. at each step.
The distribution of the next position 𝑋𝑡+1 is determined only by the current
state. This random walk is a simple Markov chain.
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Definition 1 (Markov Chain). A sequence of random variables 𝑋0, 𝑋1, . . . , 𝑋𝑡 , 𝑋𝑡+1, . . .

is a Markov chain if for any 𝑡 ∈ ℕ and any states 𝑗0, 𝑗1, . . . , 𝑗𝑡 , 𝑗 ,

Pr [𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑗𝑡 , 𝑋𝑡−1 = 𝑗𝑡−1, . . . , 𝑋0 = 𝑗0] = Pr [𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑗𝑡 ] .

A Markov chain can be characterized by a matrix 𝑃 =
(
𝑝𝑖 𝑗

)
𝑖, 𝑗 ∈Ω ∈

[0, 1]Ω×Ω where 𝑝𝑖 𝑗 = Pr [𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖]. The transition matrix 𝑃 is a
stochastic matrix since

∑
𝑗 ∈Ω 𝑝𝑖 𝑗 = 1 for all 𝑖 ∈ Ω. For example, in the above

random walk, we have Ω = [4] and

𝑝𝑖 𝑗 =


0, if 𝑖 ≁ 𝑗

1
deg(𝑖) , if 𝑖 ∼ 𝑗

.

Sometimes we will simply denote the transition matrix 𝑃 as the Markov
chain for convenience.

Let 𝐴𝐺 =
(
𝑤𝑖 𝑗

)
𝑖, 𝑗 ∈[𝑛] be a weighted graph where every𝑤𝑖 𝑗 ≥ 0. We can

normalize it into a random walk 𝑃𝐺 :

• For every 𝑖 ∈ [𝑛], let𝑤𝑖 =
∑

𝑗 𝑤𝑖 𝑗 ;

• For every 𝑖, 𝑗 ∈ [𝑛], let 𝑃𝐺 (𝑖, 𝑗) = 𝑤𝑖 𝑗

𝑤𝑖
.
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We also define a distribution 𝜋 over [𝑛] as 𝜋 (𝑖) = 𝑤𝑖∑
𝑗∈[𝑛] 𝑤𝑗

.
As a result, the 𝑃𝐺 constructed above satisfies that for every 𝑖, 𝑗 ∈ [𝑛],

𝜋 (𝑖) · 𝑃𝐺 (𝑖, 𝑗) = 𝜋 ( 𝑗) · 𝑃𝐺 ( 𝑗, 𝑖)(= 𝑤𝑖 𝑗 ).

This is called reversibility of 𝑃𝐺 . The distribution 𝜋 is called a stationary
distribution of 𝑃𝐺 .

For example, in the following graph, we have 𝑃𝐺 (1, 2) = 1
1+2+3 = 1

6 ,
𝑃𝐺 (1, 3) = 1

3 and 𝑃𝐺 (1, 4) =
1
2 .
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2 The Spectrum of Markov Chains

2.1 Spectral Decomposition

Another advantage to use reversible chains is that their transition matrices
are symmetric in some sense. Suppose 𝑃 is reversible with respect to 𝜋 .
Let Π = diag(𝜋) be the diagonal matrix with Π(𝑖, 𝑖) = 𝜋 (𝑖). Define 𝑄 =

Π
1
2 𝑃Π− 1

2 , then we can verify that 𝑄 is symmetric:

𝑄 (𝑖, 𝑗) = 𝜋 (𝑖) 1
2 𝑃 (𝑖, 𝑗)𝜋 ( 𝑗)− 1

2 = 𝜋 ( 𝑗) 1
2 𝑃 ( 𝑗, 𝑖)𝜋 (𝑖)− 1

2 = 𝑄 ( 𝑗, 𝑖).

So we can apply the spectral decomposition theorem for 𝑄 , which yields

𝑄 =
𝑛∑
𝑖=1

𝜆𝑖u𝑖uT𝑖 ,

where 𝜆1 ≥ · · · ≥ 𝜆𝑛 are eigenvalues of 𝑄 with corresponding orthonormal
eigenvectors u1, . . . , u𝑛 . If we let v𝑖 := Π− 1

2 u𝑖 , then the above is equivalent
to

𝑃 =
𝑛∑
𝑖=1

𝜆𝑖Π
− 1

2 u𝑖uT𝑖 Π
1
2 =

𝑛∑
𝑖=1

𝜆𝑖v𝑖vT𝑖 Π.

We claim that 𝜆1, . . . , 𝜆𝑛 are eigenvalues of 𝑃 with corresponding eigen-
vectors v1, . . . , v𝑛 . To see this, we have for any 𝑗 ∈ [𝑛]:

𝑃v𝑗 =
𝑛∑
𝑖=1

𝜆𝑖Π
− 1

2 u𝑖uT𝑖 Π
1
2 v𝑗

=
𝑛∑
𝑖=1

𝜆𝑖Π
− 1

2 u𝑖uT𝑖 Π
1
2Π− 1

2 u𝑗

= 𝜆 𝑗v𝑗 .
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Everything looks nice if we equip ℝ𝑛 with the inner product ⟨·, ·⟩Π de-
fined as ⟨x, y⟩Π = xTΠy =

∑𝑛
𝑖=1 𝜋 (𝑖)x(𝑖)y(𝑖). It is clear that v1, . . . , v𝑛 are

orthonormal with respect to the inner product:

⟨v𝑖 , v𝑗 ⟩Π =
0, if 𝑖 ≠ 𝑗 ;

1, if 𝑖 = 𝑗 .

2.2 Graph Expansion

We want to measure the connectivity of a graph in terms of its spectrum.
Let 𝐺 = (𝑉 , 𝐸) be a weighted graph with nonnegative weights

(
𝑤𝑖 𝑗

)
𝑖, 𝑗 ∈[𝑛] .

For any 𝑆 ⊆ 𝑉 , we define the expansion of 𝑆 as

𝑄 (𝑆, 𝑆) :=
∑

𝑖∈𝑆,𝑗 ∈𝑉 \𝑆
𝜋 (𝑖)𝑃 (𝑖, 𝑗).

Furthermore, we define the expansion of 𝑆 as

Φ(𝑆) = 𝑄 (𝑆, 𝑆)
𝜋 (𝑆) ,

where 𝜋 (𝑆) = ∑
𝑖∈𝑆 𝜋 (𝑖). Suppose 𝑋𝑡 ∼ 𝜋 , then Φ(𝑆) = Pr [𝑋𝑡+1 ∉ 𝑆 | 𝑋𝑡 ∈ 𝑆],

which is the probability of escaping 𝑆 . Equivalently, it is the ratio between
the weight of edges connecting 𝑆 and 𝑆 and the weight of edges incident to
𝑆 .

The expansion of 𝐺 is the smallest Φ(𝑆) over all 𝑆 with measure at most
1/2, i.e., Φ(𝐺) = min𝑆⊆𝑉 :𝜋 (𝑆) ≤ 1

2
Φ(𝑆). We have the following celebrated

connection between Φ(𝐺) and 𝜆2.

Theorem 2 (Cheeger’s Inequality). 1−𝜆2
2 ≤ Φ(𝑃) ≤

√
2(1 − 𝜆2).

Moreover, 𝜆2 also carries the information on how to partition 𝐺 into the
hardest (𝑆, 𝑆).

3 Cheeger’s Inequality

Now we prove Cheeger’s ineqaulity. We present the proof in terms of a
reversible Markov chain 𝑃 with eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛 . Consider
the Laplacian matrix 𝐿 = 𝐼 − 𝑃 with eigenvalues 𝛾1 ≤ 𝛾2 ≤ · · · ≤ 𝛾𝑛 . We
have shown that 𝛾1 = 0 and 𝛾𝑖 = 1 − 𝜆𝑖 for all 𝑖 ∈ [𝑛]. Then the Cheeger’s
inequality can be written in terms of 𝛾2.

Theorem 3 (Cheeger’s Inequality). 𝛾2
2 ≤ Φ(𝑃) ≤ √

2𝛾2.

We prove 𝛾2
2 ≤ Φ(𝑃) (¬) and Φ(𝑃) ≤ √

2𝛾2 () respectively.

Proof of ¬. We relate Φ(𝑃) with 𝛾2 using the variational characterization.
Note that

𝛾2 = min
𝑈 ⊆ℝ𝑛

dim(𝑈 )=2

max
x∈𝑈 \{0}

⟨x, 𝐿x⟩Π
⟨x, x⟩Π

.



[cs1961: lecture 15] random walk, cheeger’s ineqality 4

Let 𝑆 be the subset of 𝑉 such that Φ(𝑃) = max
{
Φ(𝑆),Φ(𝑆)

}
. Let 𝑈 =

span
(
1𝑆 , 1𝑆

)
. For any x ∈ 𝑈 , we can write x as 𝑎1𝑆 + 𝑏1𝑆 for some constants

𝑎 and 𝑏. Then

⟨x, 𝐿x⟩Π
⟨x, x⟩Π

=

∑
{𝑖, 𝑗 }∈𝐸 𝜋 (𝑖)𝑃 (𝑖, 𝑗) (𝑥𝑖 − 𝑥 𝑗 )2∑

𝑖 𝜋 (𝑖)𝑥2𝑖
=

∑
𝑖∈𝑆,𝑗 ∈𝑆 𝜋 (𝑖)𝑃 (𝑖, 𝑗) (𝑎 − 𝑏)2

𝜋 (𝑆)𝑎2 + 𝜋 (𝑆)𝑏2

≤
2
∑

𝑖∈𝑆,𝑗 ∈𝑆 𝜋 (𝑖)𝑃 (𝑖, 𝑗) (𝑎2 + 𝑏2)

𝜋 (𝑆)𝑎2 + 𝜋 (𝑆)𝑏2

≤ 2max

{∑
𝑖∈𝑆,𝑗 ∈𝑆 𝜋 (𝑖)𝑃 (𝑖, 𝑗)

𝜋 (𝑆) ,

∑
𝑖∈𝑆,𝑗 ∈𝑆 𝜋 (𝑖)𝑃 (𝑖, 𝑗)

𝜋 (𝑆)

}
= 2Φ(𝑃)

where the second inequality follows from the fact that for positive real
numbers 𝑧1, 𝑧2, 𝑦1, 𝑦2, 𝑧1+𝑧2

𝑦1+𝑦2 ≤ max
{
𝑧1
𝑦1
, 𝑧2𝑦2

}
. □

By definition, Φ(𝑃) = min 𝑆⊆𝑉
𝜋 (𝑆 )≤ 1

2

Φ(𝑆). To prove , we only need to find

a 𝑆 ⊆ 𝑉 such that Φ(𝑆) ≤ √
2𝛾2. Such 𝑆 can be generated using the Fiedler’s

algorithm. With input x ∈ ℝ𝑉 :

• sort 𝑉 according to x, get 𝑉 = {𝑣1, . . . , 𝑣𝑛} where x(𝑣1) ≤ x(𝑣2) ≤ x(𝑣𝑛);

• for each 𝑖 ∈ [𝑛], let 𝑆𝑖 = {𝑣1, . . . , 𝑣𝑖 };

• return the 𝑆𝑖 with the minimum Φ(𝑆𝑖 ) ∨ Φ(𝑆𝑖 ).1 1 𝑎 ∨ 𝑏 means max {𝑎,𝑏 }.

Theorem 4. For any x ⊥ 1, assume the Fiedler’s algorithm returns 𝑆 with
input x. Then Φ(𝑆) ≤

√
2𝑅𝐿 (x).

With Theorem 4, the proof of  is straightforward. Note that v2, the
eigenvector of 𝐿 corresponding to eigenvalue 𝛾2, is the minimizer of 𝑅𝐿 (x)
on the constraint that x ⊥ 1. We can divide the graph into different
blocks where each block is well connected inside. Intuitively, to get smaller∑

{𝑖, 𝑗 }∈𝐸 𝜋 (𝑖)𝑃 (𝑖, 𝑗) (𝑥𝑖 − 𝑥 𝑗 )2, we tend to assign the same value to the 𝑥𝑖 ’s in
the same block. The Fiedler’s algorithm will return a partition that divides
the blocks into two groups. This indicates that v2 contains the information
to find the bottleneck of the graph.

Proof of . Run the Fiedler’s algorithm with input x = v2 and get output 𝑆 .
By Theorem 4, Φ(𝑆) ≤

√
2𝑅𝐿 (v2) =

√
2𝛾2.

□

It remains to prove Theorem 4.

Proof of Theorem 4. Input x and run the Fiedler’s algorithm. W.l.o.g., as-
sume 𝑥1 ≤ · · · ≤ 𝑥𝑛 .

Define ℓ be the minimum 𝑘 such that
∑𝑘

𝑖=1 𝜋𝑖 ≥ 1
2 . Let y = (𝑦1, . . . , 𝑦𝑛) =

x−𝑥ℓ ·1. That is, 𝑦𝑖 = 𝑥𝑖−𝑥ℓ for all 𝑖 ∈ [𝑛]. Rescale y such that 𝑦21+𝑦2𝑛 = 1. We
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𝑦1 𝑦2 𝑦ℓ· · · · · · 𝑦𝑛

|2𝑡 |

randomly pick 𝑡 ∈ [𝑦1, 𝑦𝑛] with density 2|𝑡 | and set 𝑆𝑡 = {𝑖 ∈ [𝑛] | 𝑦𝑖 ≤ 𝑡}.
Then

max
{
Φ(𝑆𝑡 ),Φ(𝑆𝑡 )

}
=

∑
𝑖∈𝑆𝑡 , 𝑗 ∈𝑆𝑡 𝜋 (𝑖)𝑃 (𝑖, 𝑗)

min
{
𝜋 (𝑆𝑡 ), 𝜋 (𝑆𝑡 )

} .

Let 𝐴 :=
∑

𝑖∈𝑆𝑡 , 𝑗 ∈𝑆𝑡 𝜋 (𝑖)𝑃 (𝑖, 𝑗) and 𝐵 := min
{
𝜋 (𝑆𝑡 ), 𝜋 (𝑆𝑡 )

}
. We claim that

E[𝐴]
E[𝐵 ] ≤

√
2𝑅𝐿 (x).

By definition,

E [𝐴] =
∑
{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)Pr
[
𝑖 ∈ 𝑆𝑡 , 𝑗 ∈ 𝑆𝑡

]
. (1)

Note that Pr
[
𝑖 ∈ 𝑆𝑡 , 𝑗 ∈ 𝑆𝑡

]
is the probability that 𝑡 ∈ [𝑦𝑖 , 𝑦 𝑗 ], which can be

calculated directly by integration:

Equation (1) =
∑
{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
∫ 𝑦 𝑗

𝑦𝑖

2|𝑡 | d𝑡

=
∑
{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
sgn(𝑦 𝑗 )𝑦2𝑗 − sgn(𝑦𝑖 )𝑦2𝑖

)
≤

∑
{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
|𝑦𝑖 | +

��𝑦 𝑗

��) (𝑦 𝑗 − 𝑦𝑖
)

=
∑
{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

(𝜋 (𝑖)𝑃 (𝑖, 𝑗)) 1
2
(
|𝑦𝑖 | +

��𝑦 𝑗

��) · (𝜋 (𝑖)𝑃 (𝑖, 𝑗)) 1
2
(
𝑦 𝑗 − 𝑦𝑖

)
. (2)

By the Cauchy-Schwarz inequality,

Equation (2) ≤
√√ ∑

{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
|𝑦𝑖 | +

��𝑦 𝑗

��)2 ·√√ ∑
{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
𝑦 𝑗 − 𝑦𝑖

)2
≤
√√√
2

∑
{𝑖,𝑗 }∈𝐸
𝑖< 𝑗

𝜋 (𝑖)𝑃 (𝑖, 𝑗)
(
𝑦2𝑖 + 𝑦2𝑗

)
·
√
⟨y, 𝐿y⟩Π

=
√
2⟨y, y⟩Π ·

√
⟨y, 𝐿y⟩Π

Recall that ℓ is a middle line of 𝜋 . Therefore, if 𝑡 < 0, 𝜋 (𝑆𝑡 ) ≤ 𝜋 (𝑆𝑡 ) and
otherwise 𝜋 (𝑆𝑡 ) > 𝜋 (𝑆𝑡 ). Then we have

E [𝐵] = Pr [𝑡 < 0] E [𝜋 (𝑆𝑡 ) | 𝑡 < 0]︸                             ︷︷                             ︸
(3)

+ Pr [𝑡 ≥ 0] E
[
𝜋 (𝑆𝑡 )

��� 𝑡 ≥ 0
]

︸                              ︷︷                              ︸
(4)

.
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Note that

(3) = Pr [𝑡 < 0]
ℓ−1∑
𝑖=1

𝜋 (𝑖)Pr [𝑖 ∈ 𝑆𝑡 | 𝑡 < 0]

=
ℓ−1∑
𝑖=1

𝜋 (𝑖)
∫ 0

𝑦𝑖

2|𝑡 | d𝑡 =
ℓ−1∑
𝑖=1

𝜋 (𝑖)𝑦2𝑖 .

Similarly, (4) =
∑𝑛

𝑖=ℓ 𝜋 (𝑖)𝑦2𝑖 . Summing up the two terms, we have E [𝐵] =∑𝑛
𝑖=1 𝜋 (𝑖)𝑦2𝑖 = ⟨y, y⟩Π . Therefore,

E [𝐴]
E [𝐵] ≤

√
2⟨y, 𝐿y⟩Π
⟨y, y⟩Π

=
√
2𝑅𝐿 (y).

Since y is obtained by adding a constant offset to x and x ⊥ 1, we have
⟨y, y⟩Π ≥ ⟨x, x⟩Π and ⟨y, 𝐿y⟩Π = ⟨x, 𝐿x⟩Π . Thus

E [𝐴]
E [𝐵] ≤

√
2𝑅𝐿 (y) ≤

√
2𝑅𝐿 (x),

or equivalently
E
[
𝐴 − 𝐵

√
2𝑅𝐿 (x)

]
≤ 0.

Therefore, the probability of choosing 𝑡 ∈ [𝑦1, 𝑦𝑛] such that 𝐴−𝐵
√
2𝑅𝐿 (x) ≤

0 is nonzero. This proves the existence of 𝑆𝑡 that max
{
Φ(𝑆𝑡 ),Φ(𝑆𝑡 )

}
≤√

2𝑅𝐿 (x)and thus indicates the correctness of Theorem 4. □
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