[CS1961: Lecture 16] Cauchy Interlacing Theorem, Huang's Proof of Sensitivity Conjecture

1 Cauchy Interlacing Theorem

Theorem 1 (Cauchy Interlacing Theorem). Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Let $B \in \mathbb{R}^{m \times m}$ be a principal submatrix ${ }^{1}$ of A with eigenvalues $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{m}$. Then for all $k \in m$, $\lambda_{k} \geq \mu_{k} \geq \lambda_{k+n-m}$.

Proof. It is sufficient to prove the case when $m=n-1$. W.l.o.g, assume B is generated by deleting the first row and first column in A. By the CourantFicher theorem, we have

$$
\lambda_{k}=\max _{\substack{V \in \mathbb{R} \\ \operatorname{dim}(V)=k}} \min _{\substack{ \\\mathrm{d} \backslash \backslash\{0\}}} R_{A}(\mathrm{x}) \quad \text { and } \quad \mu_{k}=\max _{\substack{U \subseteq \mathbb{R} n-1 \\ \operatorname{dim}(U)=k}} \min _{\mathrm{y} \in U \backslash\{0\}} R_{B}(\mathrm{y}) .
$$

For any $\mathrm{y} \in \mathbb{R}^{n-1}$, let $\mathbf{y}^{\prime}=\left[\begin{array}{l}0 \\ \mathrm{y}\end{array}\right]$. Then $\mathrm{y}^{\prime} \in \mathbb{R}^{n}$ and \mathbf{y}^{\prime} satisfies that $\langle\mathbf{y}, B \mathbf{y}\rangle=\left\langle\mathbf{y}^{\prime}, A \mathbf{y}^{\prime}\right\rangle$ and $\langle\mathbf{y}, \mathbf{y}\rangle=\left\langle\mathbf{y}^{\prime}, \mathrm{y}^{\prime}\right\rangle$. Therefore,

$$
\mu_{k}=\max _{\substack{U \subseteq \mathbb{R}^{n-1} \\ \operatorname{dim}(U)=k}} \min _{\mathrm{y} \in U \backslash\{0\}} R_{A}\left(\mathrm{y}^{\prime}\right) .
$$

This indicates that $\mu_{k} \leq \lambda_{k}$.
For the proof of $\mu_{k} \geq \lambda_{k+n-m}$, consider $-A$ and $-B$. Then the spectrum of $-A$ is $-\lambda_{n} \geq-\lambda_{n-1} \geq \cdots \geq-\lambda_{1}$ and the spectrum of $-B$ is $-\mu_{n-1} \geq-\mu_{n-2} \geq$ $\cdots \geq-\mu_{1}$. With the same argument, we can verify that $-\mu_{k} \leq-\lambda_{k+1}$.

Let $n^{+}(A)$ be the number of positive eigenvalues of A and $n^{-}(A)$ be the number of negative eigenvalues. Let $\alpha(G)$ be the independent number of G. We can derive an upper bound of $\alpha(G)$ using the Cauchy interlacing theorem.

Theorem 2 (Cvetkovic Theorem). $\alpha(G) \leq \min \left\{n-n^{+}(A), n-n^{-}(A)\right\}$.
Proof. Let $S \subseteq V$ be an independent set with size $\alpha(G)$. Let B be the principal submatrix of A indexed by S. Then B must be a zero matrix with each eigenvalue $\mu_{k}=0$ for $k \in[\alpha(G)]$.

For $k \in[\alpha(G)]$, by the Cauchy interlacing theorem, $\lambda_{k} \geq \mu_{k} \geq \lambda_{k+n-\alpha(G)}$. Therefore we have

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\alpha(G)} \geq 0 .
$$

This indicates $n^{-}(A) \leq n-\alpha(G)$. Apply the same argument on $-A$ and $-B$, we can similarly yield that $n^{+}(A) \leq n-\alpha(G)$.

Let $\chi(G)$ be the chromatic number of G. We can also derive an upper bound for $\chi(G)$ using Cauchy interlacing theorem.

Theorem 3 (Wilf Theorem). $\chi(G) \leq\left\lfloor\mu_{1}\right\rfloor+1$.

Proof. We prove this by induction on n. When $n=1$, the bound obviously holds. When $n \geq 2$, choose a vertex v with the smallest degree. Therefore,

$$
\operatorname{deg}(v) \leq d_{\mathrm{ave}} \leq \mu_{1}(G)
$$

Let H be the graph induced by $V \backslash\{v\}$. By induction hypothesis, we have $\chi(H) \leq\left\lfloor\mu_{1}(H)\right\rfloor+1$. By the Cauchy interlacing theorem, we can further yield that

$$
\chi(H) \leq\left\lfloor\mu_{1}(H)\right\rfloor+1 \leq\left\lfloor\mu_{1}(G)\right\rfloor+1 .
$$

Note that the number of neighbors of v is no larger than $\mu_{1}(G)$. Therefore, $\left\lfloor\mu_{1}(G)\right\rfloor+1$ colors are enough to construct a proper coloring.

2 Sensitivity Conjecture

2.1 Boolean Function and Its Sensitivity

Let $f:\{-1,1\}^{n} \rightarrow\{0,1\}$ be a boolean function. We can use a decision tree to describe f and the depth of the tree measures the complexity of f. For example, consider the function f that $f(\mathbf{x})=1$ iff $\mathbf{x}(1)=\mathbf{x}(2)=0$. The decision tree for this function is

In contrast, when $f(\mathbf{x})=\left\{\begin{array}{ll}1, & \text { if }\left(\sum_{i} \mathbf{x}(i)\right) \bmod 2=1 \\ 0, & o . w .\end{array}\right.$, the depth of the decision tree is n, which means the function is much more complex.

There is another way to measure the complexity of f. We can find a polynomial p such that $p(\mathbf{x})=f(\mathbf{x})$ for any $\mathbf{x} \in\{-1,1\}^{n}$. Larger degree of p indicates that f is more complex.

For every $\mathbf{x} \in\{-1,1\}^{n}$, let

$$
s(f, \mathbf{x})=|\{i \mid f(\mathbf{x}) \neq f(\mathbf{x} \oplus i)\}|
$$

where $\mathbf{x} \oplus i$ means flipping the i-th bit of \mathbf{x}. The sensitivity of f is defined as $s(f):=\max _{\mathbf{x} \in\{-1,1\}^{n}} s(f, \mathbf{x})$. Just as indicated by its name, this quantity reflects the sensitivity to perturbations of f.

When the graph G is d-regular, the Wilf theorem indicates that $\chi(G) \leq d+1$, which is tight in this case.

Similarly, we can define block sensitivity. Define $b s(f, \mathbf{x})$ as the maximum number t of disjoint subsets $B_{1}, \ldots, B_{t} \subseteq[n]$ such that $f(\mathbf{x}) \neq f(x \oplus$ B_{i}) for every $i \in[t]$. The block sensitivity of f is $b s(f):=\max _{\mathbf{x} \in\{-1,1\}^{n}} b s(f, \mathbf{x})$. Obviously, $s(f) \leq b s(f)$.

2.2 Sensitivity Conjecture

The sensitivity conjecture states that there exists positive constant c such that $b s(f) \leq(s(f))^{c}$. In other words, $b s(f)$ and $s(f)$ are equivalent in a polynomial sense.

Let Q_{n} be the n-dimensional hypercube ${ }^{2}$. In the work of [?] this conjecture has been reduced to the following proposition.

Proposition 4. For any induced subgraph H of Q_{n} with $2^{n-1}+1$ vertices, $\Delta(H) \geq \sqrt{n} .{ }^{3}$

Hao Huang gave a remarkable proof of the above proposition and hence the sensitivity conjecture.
Proof. Let $A_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $A_{n}=\left[\begin{array}{cc}A_{n-1} & I \\ I & -A_{n-1}\end{array}\right]$ for $n \geq 2$. We claim that $A_{n}^{2}=n I$. This can be proved by induction. When $n=1$, it is trivial to have $A_{1}^{2}=I$. For $n \geq 2$,

$$
A_{n}^{2}=\left[\begin{array}{cc}
A_{n-1} & I \\
I & -A_{n-1}
\end{array}\right]^{\top}\left[\begin{array}{cc}
A_{n-1} & I \\
I & -A_{n-1}
\end{array}\right]=\left[\begin{array}{cc}
A_{n-1}^{2}+I & 0 \\
0 & A_{n-1}^{2}+I
\end{array}\right]=n I .
$$

This indicates that the eigenvalue of A_{n} is either \sqrt{n} or $-\sqrt{n}$. Note that the trace of A_{n} is 0 . Therefore,

$$
\lambda_{1}=\cdots=\lambda_{2^{n-1}}=\sqrt{n} \quad \text { and } \quad \lambda_{2^{n-1}+1}=\cdots=\lambda_{2^{n}}=-\sqrt{n} .
$$

It can be verified that A_{n} is a signed adjacent matrix of Q_{n}. That is, $A_{n}(x, y) \neq 0$ indicates that $Q_{n}(x, y) \neq 0$ and $A_{n}(x, y) \in\{0, \pm 1\}$. Pick the columns and rows in H, we can get a principal submatrix of A_{n}, denoted as $A_{n}(H)$. Then we have $\Delta(H)=\left\|A_{n}(H)\right\|_{\infty} \geq \lambda_{1}\left(A_{n}(H)\right.$. By the Cauchy interlacing theorem, $\lambda_{1}\left(A_{n}(H)\right) \geq \lambda_{2^{n-1}}\left(A_{n}\right)=\sqrt{n}$. This completes the proof.
${ }^{2}$ A hypercube $Q_{n}=(V, E)$ is
a graph with $V=\{0,1\}^{n}$ and
$E=\{\{x, y\} \mid x=y \oplus i$ for some $i\}$
${ }^{3} \Delta(H)$ is the maximum degree of H.

The $2^{n-1}+1$ vertices can not be reduced any more in Proposition 4. Note that hypercube is bipartite. So there exists an independent set with 2^{n-1} vertices in Q_{n}.

