
Do you feel lucky?
CS1212 Introduction to Theoretical Computer Science

Lecture 9-11

Kuan Yang

Do you feel lucky?

Do you feel lucky?

An introduction to probability and randomized algorithms

Polynomial identity

Polynomial identity
Given 2 univariate polynomials f(x), g(x) : ℝ → ℝ

Polynomial identity
Given 2 univariate polynomials f(x), g(x) : ℝ → ℝ

Assume and f(x) = ∑d
n=0 an ⋅ xn g(x) = b0 ⋅ ∏d

n=1 (x − bn)

Polynomial identity
Given 2 univariate polynomials f(x), g(x) : ℝ → ℝ

Assume and f(x) = ∑d
n=0 an ⋅ xn g(x) = b0 ⋅ ∏d

n=1 (x − bn)

Determine whether f(x) ≡ g(x)

Polynomial identity
Given 2 univariate polynomials f(x), g(x) : ℝ → ℝ

Assume and f(x) = ∑d
n=0 an ⋅ xn g(x) = b0 ⋅ ∏d

n=1 (x − bn)

Determine whether f(x) ≡ g(x)

Expand then compare all coefficientsg(x)

Polynomial identity
Given 2 univariate polynomials f(x), g(x) : ℝ → ℝ

Assume and f(x) = ∑d
n=0 an ⋅ xn g(x) = b0 ⋅ ∏d

n=1 (x − bn)

Determine whether f(x) ≡ g(x)

Expand then compare all coefficientsg(x)

 multiplication or with Fourier transformO(d2) O(d log d)

Polynomial identity

Polynomial identity
More clever?

Polynomial identity
More clever?

Select then check if c0, c1, …, cd f(ci) = g(ci)

Polynomial identity
More clever?

Select then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra: has rootsf(x) − g(x) ≤ d

Polynomial identity
More clever?

Select then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra: has rootsf(x) − g(x) ≤ d

Still need times multiplicationO(d2)

Polynomial identity
More clever?

Select then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra: has rootsf(x) − g(x) ≤ d

Still need times multiplicationO(d2)

However if we allow errors with low probabilities… say 0.01

Polynomial identity
More clever?

Select then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra: has rootsf(x) − g(x) ≤ d

Still need times multiplicationO(d2)

However if we allow errors with low probabilities… say 0.01

Choose of size then select uniformly at randomS 100d c ∈ S

Polynomial identity

Polynomial identity
Suppose , no matter what aref(x) ≢ g(x) f(x), g(x)

Polynomial identity
Suppose , no matter what aref(x) ≢ g(x) f(x), g(x)

At most numbers in satisfy d c1, c2, …, cd S f(ci) = g(ci)

Polynomial identity
Suppose , no matter what aref(x) ≢ g(x) f(x), g(x)

At most numbers in satisfy d c1, c2, …, cd S f(ci) = g(ci)

Select uniformly, then c ∈ S Pr[f(c) = g(c)] ≤ d/ |S | = 1/100

Polynomial identity
Suppose , no matter what aref(x) ≢ g(x) f(x), g(x)

At most numbers in satisfy d c1, c2, …, cd S f(ci) = g(ci)

Select uniformly, then c ∈ S Pr[f(c) = g(c)] ≤ d/ |S | = 1/100

How about lower mistake probability?

Polynomial identity
Suppose , no matter what aref(x) ≢ g(x) f(x), g(x)

At most numbers in satisfy d c1, c2, …, cd S f(ci) = g(ci)

Select uniformly, then c ∈ S Pr[f(c) = g(c)] ≤ d/ |S | = 1/100

How about lower mistake probability?

Select independently, then c1, c2 ∈ S Pr[∀ i, f(ci) = g(ci)] ≤ 1/1002

Polynomial identity
Suppose , no matter what aref(x) ≢ g(x) f(x), g(x)

At most numbers in satisfy d c1, c2, …, cd S f(ci) = g(ci)

Select uniformly, then c ∈ S Pr[f(c) = g(c)] ≤ d/ |S | = 1/100

How about lower mistake probability?

Select independently, then c1, c2 ∈ S Pr[∀ i, f(ci) = g(ci)] ≤ 1/1002

 times multiplication if allow mistake probability O(d log(1/ε)) ε

What is probability?

What is probability?

Why do we use a large set ?S

What is probability?

Why do we use a large set ?S

What are we talking about when we say “probability” ?

What is probability?

Why do we use a large set ?S

What are we talking about when we say “probability” ?

Throw a dice, 6 appearing due to 2 outcomes ?Pr[] = 1/2

What is probability?

Why do we use a large set ?S

What are we talking about when we say “probability” ?

Throw a dice, 6 appearing due to 2 outcomes ?Pr[] = 1/2

Pick an integer uniformly at random…… ?

What is probability?

Why do we use a large set ?S

What are we talking about when we say “probability” ?

Throw a dice, 6 appearing due to 2 outcomes ?Pr[] = 1/2

Pick an integer uniformly at random…… ?

There are two boxes having and coins respectively.
Open a box and find coins. coins in another ?

x ⌊x/2⌋
100 𝔼[] = 125

Andrey Nikolaevich Kolmogorov
(1903.4.25 - 1987.10.20)

What is probability?

What is probability?

We only consider discrete / finite models

What is probability?

We only consider discrete / finite models

Probability is counting…

What is probability?

We only consider discrete / finite models

Probability is counting…

What is probability?

We only consider discrete / finite models

Probability is counting…

Each event is a set of outcomes

What is probability?

We only consider discrete / finite models

Probability is counting…

Each event is a set of outcomes

uniform: equal probabilities

What is probability?

We only consider discrete / finite models

Probability is counting…

Each event is a set of outcomes

uniform: equal probabilities

Conditional probability: Pr[A ∣ B] = Pr[A ∩ B]/ Pr[B]

Independent events

Independent events
Independence: Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Independent events
Independence: Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Using conditional probability: Pr[A ∣ B] = Pr[A]

Independent events
Independence: Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Using conditional probability: Pr[A ∣ B] = Pr[A]

Warning: distinguish independent and disjoint events

Independent events
Independence: Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Using conditional probability: Pr[A ∣ B] = Pr[A]

Warning: distinguish independent and disjoint events

Independent events
Independence: Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Using conditional probability: Pr[A ∣ B] = Pr[A]

Warning: distinguish independent and disjoint events

Disjoint events are highly dependent!

Multivariate polynomials

Multivariate polynomials
No generalization of fundamental theorem of algebra

Multivariate polynomials
No generalization of fundamental theorem of algebra

: a polynomial of variables and degreeQ ∈ ℂ[x1, x2, …, xn] n ≤ d

Multivariate polynomials
No generalization of fundamental theorem of algebra

: a polynomial of variables and degreeQ ∈ ℂ[x1, x2, …, xn] n ≤ d

Schwartz-Zippel lemma: for any ,U ⊆ ℂ

Multivariate polynomials
No generalization of fundamental theorem of algebra

: a polynomial of variables and degreeQ ∈ ℂ[x1, x2, …, xn] n ≤ d

Schwartz-Zippel lemma: for any ,U ⊆ ℂ

Prr1,r2,…,rn∈U[Q(r1, r2, …, rn) = 0] ≤
d

|U |

Multivariate polynomials
No generalization of fundamental theorem of algebra

: a polynomial of variables and degreeQ ∈ ℂ[x1, x2, …, xn] n ≤ d

Schwartz-Zippel lemma: for any ,U ⊆ ℂ

Prr1,r2,…,rn∈U[Q(r1, r2, …, rn) = 0] ≤
d

|U |

Counting version: for any ,U ⊆ ℂ

Multivariate polynomials
No generalization of fundamental theorem of algebra

: a polynomial of variables and degreeQ ∈ ℂ[x1, x2, …, xn] n ≤ d

Schwartz-Zippel lemma: for any ,U ⊆ ℂ

Prr1,r2,…,rn∈U[Q(r1, r2, …, rn) = 0] ≤
d

|U |

Counting version: for any ,U ⊆ ℂ

 has roots if Q(x1, x2, …, xn) ≤ d |U |n−1 x1, x2, …, xn ∈ U

Min-cut problem

Min-cut problem
, a cut is a subset of that partitions G = (V, E) E V

Min-cut problem
, a cut is a subset of that partitions G = (V, E) E V

, where , , but V = S ∪ T S ≠ ∅ T ≠ ∅ S ∩ T = ∅

Min-cut problem
, a cut is a subset of that partitions G = (V, E) E V

, where , , but V = S ∪ T S ≠ ∅ T ≠ ∅ S ∩ T = ∅

Subset of edges connecting and is a cutS T

Min-cut problem
, a cut is a subset of that partitions G = (V, E) E V

, where , , but V = S ∪ T S ≠ ∅ T ≠ ∅ S ∩ T = ∅

Subset of edges connecting and is a cutS T

Min-cut problem
, a cut is a subset of that partitions G = (V, E) E V

, where , , but V = S ∪ T S ≠ ∅ T ≠ ∅ S ∩ T = ∅

Subset of edges connecting and is a cutS T

Min-cut: a cut of the minimum size

Finding min-cut

Finding min-cut
We would like to randomly find a cut

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex a bit, and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex a bit, and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

What is the probability of finding a minimum cut?

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex a bit, and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

What is the probability of finding a minimum cut?

a

b f

e
dc

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex a bit, and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

What is the probability of finding a minimum cut?

For a particular cut a

b f

e
dc

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex a bit, and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

What is the probability of finding a minimum cut?

For a particular cut a

b f

e
dc

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex a bit, and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

What is the probability of finding a minimum cut?

For a particular cut

Pr[finding it] = 21−n

a

b f

e
dc

Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex a bit, and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

What is the probability of finding a minimum cut?

For a particular cut

Pr[finding it] = 21−n

a

b f

e
dc

Karger’s algorithm

Karger’s algorithm

At each step, contract an edge uniformly at random

Karger’s algorithm

At each step, contract an edge uniformly at random

a

b f

e
dc

Karger’s algorithm

At each step, contract an edge uniformly at random

a

b f

e
dc

Karger’s algorithm

At each step, contract an edge uniformly at random

ab
f

e
dc

a

b f

e
dc

Karger’s algorithm

At each step, contract an edge uniformly at random

Until there are two vertices, output the cut between them

ab
f

e
dc

a

b f

e
dc

Karger’s algorithm

At each step, contract an edge uniformly at random

Until there are two vertices, output the cut between them

ab
f

e
dc

a

b f

e
dc

abc def

Karger’s algorithm

Karger’s algorithm
Let be the event of outputting a (particular) min-cutS

Karger’s algorithm
Let be the event of outputting a (particular) min-cutS

 be the event of not contracting an edge in the min-cutSi

Karger’s algorithm
Let be the event of outputting a (particular) min-cutS

 be the event of not contracting an edge in the min-cutSi

S = S1 ∩ S2 ∩ ⋯ ∩ Sn−2

Karger’s algorithm
Let be the event of outputting a (particular) min-cutS

 be the event of not contracting an edge in the min-cutSi

S = S1 ∩ S2 ∩ ⋯ ∩ Sn−2

Pr[S] = Pr[S1] ⋅ Pr[S2 ∣ S1] ⋅ ⋯ ⋅ Pr[Sn−2 ∣ S1 ∩ ⋯ ∩ Sn−3]

Karger’s algorithm
Let be the event of outputting a (particular) min-cutS

 be the event of not contracting an edge in the min-cutSi

S = S1 ∩ S2 ∩ ⋯ ∩ Sn−2

Pr[S] = Pr[S1] ⋅ Pr[S2 ∣ S1] ⋅ ⋯ ⋅ Pr[Sn−2 ∣ S1 ∩ ⋯ ∩ Sn−3]

Suppose the min-cut has edges…k

Karger’s algorithm
Let be the event of outputting a (particular) min-cutS

 be the event of not contracting an edge in the min-cutSi

S = S1 ∩ S2 ∩ ⋯ ∩ Sn−2

Pr[S] = Pr[S1] ⋅ Pr[S2 ∣ S1] ⋅ ⋯ ⋅ Pr[Sn−2 ∣ S1 ∩ ⋯ ∩ Sn−3]

Suppose the min-cut has edges…k

Key observation: at anytime, the minimum degree ≥ k

Karger’s algorithm

Karger’s algorithm
At -th step, graph has edgesi ≥ (n − i + 1)k/2

Karger’s algorithm
At -th step, graph has edgesi ≥ (n − i + 1)k/2

Pr[contracting a min-cut edge] ≤
k

k(n − i + 1)/2
=

2
n − i + 1

Karger’s algorithm
At -th step, graph has edgesi ≥ (n − i + 1)k/2

Pr[contracting a min-cut edge] ≤
k

k(n − i + 1)/2
=

2
n − i + 1

Pr[find the min-cut] ≥
n−2

∏
i=1

n − i − 1
n − i + 1

=
2

n(n − 1)

Karger’s algorithm
At -th step, graph has edgesi ≥ (n − i + 1)k/2

Pr[contracting a min-cut edge] ≤
k

k(n − i + 1)/2
=

2
n − i + 1

Pr[find the min-cut] ≥
n−2

∏
i=1

n − i − 1
n − i + 1

=
2

n(n − 1)

Run Karger’s algorithm times, and output the optimalc ⋅ n2

Karger’s algorithm
At -th step, graph has edgesi ≥ (n − i + 1)k/2

Pr[contracting a min-cut edge] ≤
k

k(n − i + 1)/2
=

2
n − i + 1

Pr[find the min-cut] ≥
n−2

∏
i=1

n − i − 1
n − i + 1

=
2

n(n − 1)

Run Karger’s algorithm times, and output the optimalc ⋅ n2

Pr[not output a min-cut] ≤ (1 −
2

n(n − 1))
cn2

≤ e−c/2

Expectation

Expectation
Random variable: is a function of all outcomesX : Ω → ℝ

Expectation
Random variable: is a function of all outcomesX : Ω → ℝ

Expectation:

Expectation
Random variable: is a function of all outcomesX : Ω → ℝ

Expectation:

𝔼[X] = ∑ω∈Ω Pr[ω] ⋅ X(ω)

Expectation
Random variable: is a function of all outcomesX : Ω → ℝ

Expectation:

𝔼[X] = ∑ω∈Ω Pr[ω] ⋅ X(ω)

Another definition: (double counting)

Expectation
Random variable: is a function of all outcomesX : Ω → ℝ

Expectation:

𝔼[X] = ∑ω∈Ω Pr[ω] ⋅ X(ω)

Another definition: (double counting)

𝔼[X] = ∑x∈ℝ x ⋅ Prω[X(ω) = x]

Expectation
Random variable: is a function of all outcomesX : Ω → ℝ

Expectation:

𝔼[X] = ∑ω∈Ω Pr[ω] ⋅ X(ω)

Another definition: (double counting)

𝔼[X] = ∑x∈ℝ x ⋅ Prω[X(ω) = x]

Warning: forget everything about conditional expectations

Linearity of expectation

Linearity of expectation
: set of outcomesΩ

Linearity of expectation
: set of outcomesΩ

: random variablesX1, X2, …, Xn

Linearity of expectation
: set of outcomesΩ

: random variablesX1, X2, …, Xn

Linearity of expectation:

Linearity of expectation
: set of outcomesΩ

: random variablesX1, X2, …, Xn

Linearity of expectation:

𝔼[X1 + X2 + ⋯ + Xn] = 𝔼[X1] + 𝔼[X2] + ⋯ + 𝔼[Xn]

Linearity of expectation
: set of outcomesΩ

: random variablesX1, X2, …, Xn

Linearity of expectation:

𝔼[X1 + X2 + ⋯ + Xn] = 𝔼[X1] + 𝔼[X2] + ⋯ + 𝔼[Xn]

Proof: 𝔼[X1 + X2] = ∑ω∈Ω Pr[ω] ⋅ (X1(ω) + X2(ω)) = 𝔼[X1] + 𝔼[X2]

Linearity of expectation
: set of outcomesΩ

: random variablesX1, X2, …, Xn

Linearity of expectation:

𝔼[X1 + X2 + ⋯ + Xn] = 𝔼[X1] + 𝔼[X2] + ⋯ + 𝔼[Xn]

Proof: 𝔼[X1 + X2] = ∑ω∈Ω Pr[ω] ⋅ (X1(ω) + X2(ω)) = 𝔼[X1] + 𝔼[X2]

Do not assume any independence here

Linearity of expectation

Linearity of expectation
Throw a dice twice and denoted by two independent r.v.s X1, X2

Linearity of expectation
Throw a dice twice and denoted by two independent r.v.s X1, X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

Linearity of expectation
Throw a dice twice and denoted by two independent r.v.s X1, X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

𝔼[X1 + X2] = 1
36 ⋅ (2 + 3 + 3 + 4 + 4 + 4 + ⋯ + 11 + 11 + 12) = 7

Linearity of expectation
Throw a dice twice and denoted by two independent r.v.s X1, X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

𝔼[X1 + X2] = 1
36 ⋅ (2 + 3 + 3 + 4 + 4 + 4 + ⋯ + 11 + 11 + 12) = 7

Throw a dice once and denoted by two identical r.v.s X1 = X2

Linearity of expectation
Throw a dice twice and denoted by two independent r.v.s X1, X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

𝔼[X1 + X2] = 1
36 ⋅ (2 + 3 + 3 + 4 + 4 + 4 + ⋯ + 11 + 11 + 12) = 7

Throw a dice once and denoted by two identical r.v.s X1 = X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

Linearity of expectation
Throw a dice twice and denoted by two independent r.v.s X1, X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

𝔼[X1 + X2] = 1
36 ⋅ (2 + 3 + 3 + 4 + 4 + 4 + ⋯ + 11 + 11 + 12) = 7

Throw a dice once and denoted by two identical r.v.s X1 = X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

𝔼[X1 + X2] = 1
6 ⋅ (2 + 4 + 6 + 8 + 10 + 12) = 7

Random permutation

Random permutation
Consider a permutation of elementsπ = (π1, π2, …, πn) n

Random permutation
Consider a permutation of elementsπ = (π1, π2, …, πn) n

We say is a fixed point if i πi = i

Random permutation
Consider a permutation of elementsπ = (π1, π2, …, πn) n

We say is a fixed point if i πi = i

Question: if is chosen randomly, how many fixed points ?π

Random permutation
Consider a permutation of elementsπ = (π1, π2, …, πn) n

We say is a fixed point if i πi = i

Question: if is chosen randomly, how many fixed points ?π

, and Xi = 1 if πi = i Xi = 0 otherwise

Random permutation
Consider a permutation of elementsπ = (π1, π2, …, πn) n

We say is a fixed point if i πi = i

Question: if is chosen randomly, how many fixed points ?π

, and Xi = 1 if πi = i Xi = 0 otherwise

𝔼[Xi] = Pr[Xi = 1] = Pr[πi = i] = (n − 1)!/n! = 1/n

Random permutation
Consider a permutation of elementsπ = (π1, π2, …, πn) n

We say is a fixed point if i πi = i

Question: if is chosen randomly, how many fixed points ?π

, and Xi = 1 if πi = i Xi = 0 otherwise

𝔼[Xi] = Pr[Xi = 1] = Pr[πi = i] = (n − 1)!/n! = 1/n

𝔼[X] = ∑n
i=1 𝔼[Xi] = 1

Coupon collector

Coupon collector

Coupon collector

Coupon collector

Coupon collector

 types of couponsn

Coupon collector

 types of couponsn

Each time draw a
coupon from types
uniformly at random

n

Coupon collector

 types of couponsn

Each time draw a
coupon from types
uniformly at random

n

Question: how many
coupons drawn until
collecting all types?

Coupon collector

Coupon collector
Let be the number of coupons drawnX

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

1

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

1 2 3

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

1 2 3 4

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

1 2 3 4 5 6 7 8

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

1 2 3 4 5 6 7 8 … …

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

1 2 3 4 5 6 7 8 … … X-3 X-2 X-1

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

1 2 3 4 5 6 7 8 … … X-3 X-2 X-1 X

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

 : # of coupons until meet a new type, if having types alreadyXi i

1 2 3 4 5 6 7 8 … … X-3 X-2 X-1 X

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

 : # of coupons until meet a new type, if having types alreadyXi i

X = ∑n−1
i=0 Xi ⟹ 𝔼[X] = ∑n−1

i=0 𝔼[Xi]

1 2 3 4 5 6 7 8 … … X-3 X-2 X-1 X

Coupon collector
Let be the number of coupons drawnX

Compute by enumerating all possibilities?X

 : # of coupons until meet a new type, if having types alreadyXi i

X = ∑n−1
i=0 Xi ⟹ 𝔼[X] = ∑n−1

i=0 𝔼[Xi]

But how to compute ?𝔼[Xi]

1 2 3 4 5 6 7 8 … … X-3 X-2 X-1 X

Coupon collector

Coupon collector
Pr[collect a new type ∣ have i types already] = (n − i)/n

Coupon collector
Pr[collect a new type ∣ have i types already] = (n − i)/n

Bernoulli trial: independent trials with success probability p

Coupon collector
Pr[collect a new type ∣ have i types already] = (n − i)/n

Bernoulli trial: independent trials with success probability p

Question: how many trials until success?

Coupon collector
Pr[collect a new type ∣ have i types already] = (n − i)/n

Bernoulli trial: independent trials with success probability p

Question: how many trials until success?

𝔼 = ∑∞
k=1 k ⋅ p ⋅ (1 − p)k−1 = ∑∞

k=0 (1 − p)k = 1/p

Coupon collector
Pr[collect a new type ∣ have i types already] = (n − i)/n

Bernoulli trial: independent trials with success probability p

Question: how many trials until success?

𝔼 = ∑∞
k=1 k ⋅ p ⋅ (1 − p)k−1 = ∑∞

k=0 (1 − p)k = 1/p

𝔼[Xi] = n/(n − i)

Coupon collector
Pr[collect a new type ∣ have i types already] = (n − i)/n

Bernoulli trial: independent trials with success probability p

Question: how many trials until success?

𝔼 = ∑∞
k=1 k ⋅ p ⋅ (1 − p)k−1 = ∑∞

k=0 (1 − p)k = 1/p

𝔼[Xi] = n/(n − i)

𝔼[X] = ∑n−1
i=0 𝔼[Xi] = n∑n

i=1 1/i ≈ n ⋅ (ln n + γ)

Do you feel lucky?

Do you feel lucky?
Expectation is a notion of “average value”

Do you feel lucky?
Expectation is a notion of “average value”

Is it possible that do not collect all after too many times?

Do you feel lucky?
Expectation is a notion of “average value”

Is it possible that do not collect all after too many times?

Suppose we have drawn couponsn ln n + cn

Do you feel lucky?
Expectation is a notion of “average value”

Is it possible that do not collect all after too many times?

Suppose we have drawn couponsn ln n + cn

Pr[do not collect type i] = (1 − 1/n)n ln n+cn < e−(ln n+c) = e−c/n

Do you feel lucky?
Expectation is a notion of “average value”

Is it possible that do not collect all after too many times?

Suppose we have drawn couponsn ln n + cn

Pr[do not collect type i] = (1 − 1/n)n ln n+cn < e−(ln n+c) = e−c/n

Union bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Do you feel lucky?
Expectation is a notion of “average value”

Is it possible that do not collect all after too many times?

Suppose we have drawn couponsn ln n + cn

Pr[do not collect type i] = (1 − 1/n)n ln n+cn < e−(ln n+c) = e−c/n

Union bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Pr[do not collect all types] ≤ n ⋅ e−c/n = e−c

Quick-sort

Quick-sort
Recall Quick-select algorithm…

Quick-sort
Recall Quick-select algorithm…

Find a pivot, then divide and conquer

Quick-sort
Recall Quick-select algorithm…

Find a pivot, then divide and conquer

Modify the algorithm into a sorting algorithm:

Quick-sort
Recall Quick-select algorithm…

Find a pivot, then divide and conquer

Modify the algorithm into a sorting algorithm:

Sort L and R respectively, then return L+M+R

Quick-sort
Recall Quick-select algorithm…

Find a pivot, then divide and conquer

Modify the algorithm into a sorting algorithm:

Sort L and R respectively, then return L+M+R

Quick-sort
Recall Quick-select algorithm…

Find a pivot, then divide and conquer

Modify the algorithm into a sorting algorithm:

Sort L and R respectively, then return L+M+R

6 3 1 5 4 2 7

Quick-sort
Recall Quick-select algorithm…

Find a pivot, then divide and conquer

Modify the algorithm into a sorting algorithm:

Sort L and R respectively, then return L+M+R

6 3 1 5 4 2 7

3 1 4 2 5 6 7

Quick-sort

Quick-sort
Let be the running time of sorting an -arrayT(n) n

Quick-sort
Let be the running time of sorting an -arrayT(n) n

If we choose pivots unluckily… T(n) = (n − 1) + T(n − 1)

Quick-sort
Let be the running time of sorting an -arrayT(n) n

If we choose pivots unluckily… T(n) = (n − 1) + T(n − 1)

… Too bad !T(n) = O(n2)

Quick-sort
Let be the running time of sorting an -arrayT(n) n

If we choose pivots unluckily… T(n) = (n − 1) + T(n − 1)

… Too bad !T(n) = O(n2)

Now we choose pivots randomly…

Quick-sort
Let be the running time of sorting an -arrayT(n) n

If we choose pivots unluckily… T(n) = (n − 1) + T(n − 1)

… Too bad !T(n) = O(n2)

Now we choose pivots randomly…

Consider the expected running time …𝔼[T(n)]

Quick-sort
Let be the running time of sorting an -arrayT(n) n

If we choose pivots unluckily… T(n) = (n − 1) + T(n − 1)

… Too bad !T(n) = O(n2)

Now we choose pivots randomly…

Consider the expected running time …𝔼[T(n)]

𝔼[T(n)] = (n − 1) + 1
n ∑n−1

k=1 𝔼[T(k)] + 𝔼[T(n − k − 1)]

Quick-sort

Quick-sort
We guess that for some constant 𝔼[T(n)] ≈ c ⋅ n ln n c

Quick-sort
We guess that for some constant 𝔼[T(n)] ≈ c ⋅ n ln n c

Prove by induction

Quick-sort
We guess that for some constant 𝔼[T(n)] ≈ c ⋅ n ln n c

Prove by induction

More clever?

Quick-sort
We guess that for some constant 𝔼[T(n)] ≈ c ⋅ n ln n c

Prove by induction

More clever?

 is the number of comparisons!T(n)

Quick-sort
We guess that for some constant 𝔼[T(n)] ≈ c ⋅ n ln n c

Prove by induction

More clever?

 is the number of comparisons!T(n)

Let be the number of comparisons between and Xij ai aj

Quick-sort
We guess that for some constant 𝔼[T(n)] ≈ c ⋅ n ln n c

Prove by induction

More clever?

 is the number of comparisons!T(n)

Let be the number of comparisons between and Xij ai aj

𝔼[T(n)] = 𝔼[∑1≤i<j≤n Xij] = ∑1≤i<j≤n 𝔼[Xij]

Quick-sort

Quick-sort
We only compare pivot with other variables

Quick-sort
We only compare pivot with other variables

Assume , means or is pivot, and…ai < aj Xij = 1 ai aj

Quick-sort
We only compare pivot with other variables

Assume , means or is pivot, and…ai < aj Xij = 1 ai aj

any such that are not chosen before taking or ak ai < ak < aj ai aj

Quick-sort
We only compare pivot with other variables

Assume , means or is pivot, and…ai < aj Xij = 1 ai aj

any such that are not chosen before taking or ak ai < ak < aj ai aj

So ?Pr[Xij = 1] =

Quick-sort
We only compare pivot with other variables

Assume , means or is pivot, and…ai < aj Xij = 1 ai aj

any such that are not chosen before taking or ak ai < ak < aj ai aj

So ?Pr[Xij = 1] =

More clever?

Quick-sort
We only compare pivot with other variables

Assume , means or is pivot, and…ai < aj Xij = 1 ai aj

any such that are not chosen before taking or ak ai < ak < aj ai aj

So ?Pr[Xij = 1] =

More clever?

 of comparisons between -th smallest and -th smallestXij = # i j

Quick-sort

Quick-sort
Pick a random permutation π = (π1, π2, …, πn)

Quick-sort
Pick a random permutation π = (π1, π2, …, πn)

For any subsequence , choose pivot with smallest [al, …, ar] ak πk

Quick-sort
Pick a random permutation π = (π1, π2, …, πn)

For any subsequence , choose pivot with smallest [al, …, ar] ak πk

Pr[Xij = 1] = 2/(j − i + 1)

Quick-sort
Pick a random permutation π = (π1, π2, …, πn)

For any subsequence , choose pivot with smallest [al, …, ar] ak πk

Pr[Xij = 1] = 2/(j − i + 1)

𝔼[T(n)] = ∑1≤i<j≤n 𝔼[Xij] = ∑1≤i<j≤n Pr[Xij = 1] = ∑i<j 2/(j − i + 1)

Quick-sort
Pick a random permutation π = (π1, π2, …, πn)

For any subsequence , choose pivot with smallest [al, …, ar] ak πk

Pr[Xij = 1] = 2/(j − i + 1)

𝔼[T(n)] = ∑1≤i<j≤n 𝔼[Xij] = ∑1≤i<j≤n Pr[Xij = 1] = ∑i<j 2/(j − i + 1)

Let Hn = ∑n
i=1 1/i ≈ ln n + γ

Quick-sort
Pick a random permutation π = (π1, π2, …, πn)

For any subsequence , choose pivot with smallest [al, …, ar] ak πk

Pr[Xij = 1] = 2/(j − i + 1)

𝔼[T(n)] = ∑1≤i<j≤n 𝔼[Xij] = ∑1≤i<j≤n Pr[Xij = 1] = ∑i<j 2/(j − i + 1)

Let Hn = ∑n
i=1 1/i ≈ ln n + γ

𝔼[T(n)] = 2∑n−1
i=1 (Hn−i+1 − 1) ≤ 2(n − 1)(Hn − 1) ≤ 2n ln n

Markov’s inequality

Markov’s inequality
Markov’s inequality: Suppose is a nonnegative r.v.X ≥ 0

Markov’s inequality
Markov’s inequality: Suppose is a nonnegative r.v.X ≥ 0

Then for any , .C > 0 Pr[X ≥ C] ≤ 𝔼[X]
C

Markov’s inequality
Markov’s inequality: Suppose is a nonnegative r.v.X ≥ 0

Then for any , .C > 0 Pr[X ≥ C] ≤ 𝔼[X]
C

Proof: 𝔼[X] = ∑ω ω ⋅ Pr[X = ω] ≥ 0 ⋅ Pr[X < C] + C ⋅ Pr[X ≥ C]

Markov’s inequality
Markov’s inequality: Suppose is a nonnegative r.v.X ≥ 0

Then for any , .C > 0 Pr[X ≥ C] ≤ 𝔼[X]
C

Proof: 𝔼[X] = ∑ω ω ⋅ Pr[X = ω] ≥ 0 ⋅ Pr[X < C] + C ⋅ Pr[X ≥ C]

Application: Randomized Quick-Sort

Markov’s inequality
Markov’s inequality: Suppose is a nonnegative r.v.X ≥ 0

Then for any , .C > 0 Pr[X ≥ C] ≤ 𝔼[X]
C

Proof: 𝔼[X] = ∑ω ω ⋅ Pr[X = ω] ≥ 0 ⋅ Pr[X < C] + C ⋅ Pr[X ≥ C]

Application: Randomized Quick-Sort

Recall that 𝔼[T(n)] ≤ 2n ln n

Markov’s inequality
Markov’s inequality: Suppose is a nonnegative r.v.X ≥ 0

Then for any , .C > 0 Pr[X ≥ C] ≤ 𝔼[X]
C

Proof: 𝔼[X] = ∑ω ω ⋅ Pr[X = ω] ≥ 0 ⋅ Pr[X < C] + C ⋅ Pr[X ≥ C]

Application: Randomized Quick-Sort

Recall that 𝔼[T(n)] ≤ 2n ln n

Pr[T(n) ≥ 2cn ln n] ≤ 1/c

Beyond Markov’s inequality

Beyond Markov’s inequality
Suppose , Markov’s inequality asserts X ≥ 0 Pr[X ≥ C]

Beyond Markov’s inequality
Suppose , Markov’s inequality asserts X ≥ 0 Pr[X ≥ C]

How about ?Pr[X ≤ C]

Beyond Markov’s inequality
Suppose , Markov’s inequality asserts X ≥ 0 Pr[X ≥ C]

How about ?Pr[X ≤ C]

“600 million Chinese people have monthly income ”≤ 1000

Beyond Markov’s inequality
Suppose , Markov’s inequality asserts X ≥ 0 Pr[X ≥ C]

How about ?Pr[X ≤ C]

“600 million Chinese people have monthly income ”≤ 1000

Chebyshev’s inequality: Pr[|X − 𝔼[X]| ≥ t] ≤ Var[X]/t2

Beyond Markov’s inequality
Suppose , Markov’s inequality asserts X ≥ 0 Pr[X ≥ C]

How about ?Pr[X ≤ C]

“600 million Chinese people have monthly income ”≤ 1000

Chebyshev’s inequality: Pr[|X − 𝔼[X]| ≥ t] ≤ Var[X]/t2

Application in analysis: Weierstrass approximation theorem

Beyond Markov’s inequality
Suppose , Markov’s inequality asserts X ≥ 0 Pr[X ≥ C]

How about ?Pr[X ≤ C]

“600 million Chinese people have monthly income ”≤ 1000

Chebyshev’s inequality: Pr[|X − 𝔼[X]| ≥ t] ≤ Var[X]/t2

Application in analysis: Weierstrass approximation theorem

More general: concentration of measures…

Linearity may fail…

Linearity may fail…
Linearity may fail if the number of r.v.s is infinite

Linearity may fail…
Linearity may fail if the number of r.v.s is infinite

Linearity may fail if the number of r.v.s is random

Linearity may fail…
Linearity may fail if the number of r.v.s is infinite

Linearity may fail if the number of r.v.s is random

Let be a random numberN

Linearity may fail…
Linearity may fail if the number of r.v.s is infinite

Linearity may fail if the number of r.v.s is random

Let be a random numberN

 are independently identically distributed (i.i.d.)X1, …, XN

Linearity may fail…
Linearity may fail if the number of r.v.s is infinite

Linearity may fail if the number of r.v.s is random

Let be a random numberN

 are independently identically distributed (i.i.d.)X1, …, XN

We may expect 𝔼[X1 + X2 + ⋯ + XN] = 𝔼[N] ⋅ 𝔼[Xi]

Linearity may fail…
Linearity may fail if the number of r.v.s is infinite

Linearity may fail if the number of r.v.s is random

Let be a random numberN

 are independently identically distributed (i.i.d.)X1, …, XN

We may expect 𝔼[X1 + X2 + ⋯ + XN] = 𝔼[N] ⋅ 𝔼[Xi]

Is it true?

Random number of r.v.s

Random number of r.v.s
Throw a dice, and let be the resultN

Random number of r.v.s
Throw a dice, and let be the resultN

Then let be r.v.sX1 = X2 = ⋯ = XN = N N

Random number of r.v.s
Throw a dice, and let be the resultN

Then let be r.v.sX1 = X2 = ⋯ = XN = N N

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

Random number of r.v.s
Throw a dice, and let be the resultN

Then let be r.v.sX1 = X2 = ⋯ = XN = N N

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

However, 𝔼[X1 + ⋯ + XN] = 𝔼[N2] = 91
6 ≠ 𝔼[N]2

Random number of r.v.s
Throw a dice, and let be the resultN

Then let be r.v.sX1 = X2 = ⋯ = XN = N N

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

However, 𝔼[X1 + ⋯ + XN] = 𝔼[N2] = 91
6 ≠ 𝔼[N]2

We may guess that this is because are not independentX1, …, XN

Random number of r.v.s
Throw a dice, and let be the resultN

Then let be r.v.sX1 = X2 = ⋯ = XN = N N

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

However, 𝔼[X1 + ⋯ + XN] = 𝔼[N2] = 91
6 ≠ 𝔼[N]2

We may guess that this is because are not independentX1, …, XN

How about randomly many independent r.v.s?

St. Petersburg paradox

St. Petersburg paradox
A gambler plays a game of guessing a fair (uniform) coin

St. Petersburg paradox
A gambler plays a game of guessing a fair (uniform) coin

At the first round, the gambler bets $1

St. Petersburg paradox
A gambler plays a game of guessing a fair (uniform) coin

At the first round, the gambler bets $1

If the gambler wins, they stops the game

St. Petersburg paradox
A gambler plays a game of guessing a fair (uniform) coin

At the first round, the gambler bets $1

If the gambler wins, they stops the game

If the gambler loses, they doubles the bet and guesses again

St. Petersburg paradox
A gambler plays a game of guessing a fair (uniform) coin

At the first round, the gambler bets $1

If the gambler wins, they stops the game

If the gambler loses, they doubles the bet and guesses again

Clearly, at each round 𝔼[Xi] = 0

St. Petersburg paradox
A gambler plays a game of guessing a fair (uniform) coin

At the first round, the gambler bets $1

If the gambler wins, they stops the game

If the gambler loses, they doubles the bet and guesses again

Clearly, at each round 𝔼[Xi] = 0

However, the gambler always stops with winning ()$1 ∑ Xi = 1

Enjoy the world of randomness !

Thank you

Wald’s equation

Wald’s equation
Wald’s equation (simple version):

Wald’s equation
Wald’s equation (simple version):

Suppose is a r.v. bounded by , and independent of all N n Xi

Wald’s equation
Wald’s equation (simple version):

Suppose is a r.v. bounded by , and independent of all N n Xi

Consider the random variable Xk ⋅ 1[X≥k]

Wald’s equation
Wald’s equation (simple version):

Suppose is a r.v. bounded by , and independent of all N n Xi

Consider the random variable Xk ⋅ 1[X≥k]

Since and are independent, Xk 1[X≥k] 𝔼[Xk ⋅ 1[X≥k]] = 𝔼[Xk] ⋅ 𝔼[1[X≥k]]

Wald’s equation
Wald’s equation (simple version):

Suppose is a r.v. bounded by , and independent of all N n Xi

Consider the random variable Xk ⋅ 1[X≥k]

Since and are independent, Xk 1[X≥k] 𝔼[Xk ⋅ 1[X≥k]] = 𝔼[Xk] ⋅ 𝔼[1[X≥k]]
Then 𝔼[X1 + ⋯ + XN] = ∑n

k=1 𝔼[Xk] ⋅ 𝔼[1[X≥k]]

Wald’s equation
Wald’s equation (simple version):

Suppose is a r.v. bounded by , and independent of all N n Xi

Consider the random variable Xk ⋅ 1[X≥k]

Since and are independent, Xk 1[X≥k] 𝔼[Xk ⋅ 1[X≥k]] = 𝔼[Xk] ⋅ 𝔼[1[X≥k]]
Then 𝔼[X1 + ⋯ + XN] = ∑n

k=1 𝔼[Xk] ⋅ 𝔼[1[X≥k]]
In particular, if , 𝔼[Xk] = μ 𝔼[X1 + ⋯ + XN] = μ ⋅ 𝔼[N]

Random number of r.v.s

Random number of r.v.s
Throw a dice, and let be the resultN

Random number of r.v.s
Throw a dice, and let be the resultN

Throw again and let be the resultX1 = X2 = ⋯ = XN

Random number of r.v.s
Throw a dice, and let be the resultN

Throw again and let be the resultX1 = X2 = ⋯ = XN

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

Random number of r.v.s
Throw a dice, and let be the resultN

Throw again and let be the resultX1 = X2 = ⋯ = XN

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

Let . Then μ = 𝔼[Xi] = 7
2 μ ⋅ 𝔼[N] = 49

4

Random number of r.v.s
Throw a dice, and let be the resultN

Throw again and let be the resultX1 = X2 = ⋯ = XN

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

Let . Then μ = 𝔼[Xi] = 7
2 μ ⋅ 𝔼[N] = 49

4

𝔼[X1 + ⋯ + XN] = 1
36 ⋅ (21 + 21 ⋅ 2 + ⋯ + 21 ⋅ 6) = 212

36 = 49
4

Random recurrence

KUW inequality

Quick-Select revisit

Coupon collector revisit

Yao’s lemma

Monte Carlo vs. Las Vegas

Complexity class

Enjoy the world of randomness !

Thank you

