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Polynomial identity
Given 2 univariate polynomials f(x), g(x) : ℝ → ℝ

Assume  and f(x) = ∑d
n=0 an ⋅ xn g(x) = b0 ⋅ ∏d

n=1 (x − bn)

Determine whether f(x) ≡ g(x)

Expand  then compare all coefficientsg(x)

 multiplication or  with Fourier transformO(d2) O(d log d)



Polynomial identity



Polynomial identity
More clever?



Polynomial identity
More clever?

Select  then check if c0, c1, …, cd f(ci) = g(ci)



Polynomial identity
More clever?

Select  then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra:  has  rootsf(x) − g(x) ≤ d



Polynomial identity
More clever?

Select  then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra:  has  rootsf(x) − g(x) ≤ d

Still need  times multiplicationO(d2)



Polynomial identity
More clever?

Select  then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra:  has  rootsf(x) − g(x) ≤ d

Still need  times multiplicationO(d2)

However if we allow errors with low probabilities… say 0.01



Polynomial identity
More clever?

Select  then check if c0, c1, …, cd f(ci) = g(ci)

Fundamental theorem of algebra:  has  rootsf(x) − g(x) ≤ d

Still need  times multiplicationO(d2)

However if we allow errors with low probabilities… say 0.01

Choose  of size  then select  uniformly at randomS 100d c ∈ S
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Polynomial identity
Suppose , no matter what  aref(x) ≢ g(x) f(x), g(x)

At most  numbers  in  satisfy d c1, c2, …, cd S f(ci) = g(ci)

Select  uniformly, then c ∈ S Pr[ f(c) = g(c)] ≤ d/ |S | = 1/100

How about lower mistake probability?

Select  independently, then c1, c2 ∈ S Pr[∀ i, f(ci) = g(ci)] ≤ 1/1002

 times multiplication if allow mistake probability O(d log(1/ε)) ε
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What is probability?

Why do we use a large set  ?S

What are we talking about when we say “probability” ?

Throw a dice, 6 appearing  due to 2 outcomes ?Pr[ ] = 1/2

Pick an integer uniformly at random…… ?

There are two boxes having  and  coins respectively.  
Open a box and find  coins. coins in another  ?

x ⌊x/2⌋
100 𝔼[ ] = 125





Andrey Nikolaevich Kolmogorov
(1903.4.25 - 1987.10.20)
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We only consider discrete / finite models

Probability is counting…

Each event is a set of outcomes

uniform: equal probabilities

Conditional probability: Pr[A ∣ B] = Pr[A ∩ B]/ Pr[B]
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Independent events
Independence: Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Using conditional probability: Pr[A ∣ B] = Pr[A]

Warning: distinguish independent and disjoint events

Disjoint events are highly dependent!
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Multivariate polynomials
No generalization of fundamental theorem of algebra 

: a polynomial of  variables and degreeQ ∈ ℂ[x1, x2, …, xn] n ≤ d

Schwartz-Zippel lemma: for any ,U ⊆ ℂ

Prr1,r2,…,rn∈U[Q(r1, r2, …, rn) = 0] ≤
d

|U |

Counting version: for any ,U ⊆ ℂ

 has  roots if Q(x1, x2, …, xn) ≤ d |U |n−1 x1, x2, …, xn ∈ U
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Min-cut problem
, a cut is a subset of  that partitions G = (V, E) E V

, where , , but V = S ∪ T S ≠ ∅ T ≠ ∅ S ∩ T = ∅

Subset of edges connecting  and  is a cutS T

Min-cut: a cut of the minimum size
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Finding min-cut
We would like to randomly find a cut

A naïve attempt: uniformly partition V

Assign each vertex  a  bit,  and v ∈ V 0/1 0 : v ∈ S 1 : v ∈ T

What is the probability of finding a minimum cut?

For a particular cut

Pr[finding it] = 21−n
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Karger’s algorithm

At each step, contract an edge uniformly at random

Until there are two vertices, output the cut between them

ab
f

e
dc

a

b f

e
dc

abc def
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Karger’s algorithm
Let  be the event of outputting a (particular) min-cutS

 be the event of not contracting an edge in the min-cutSi

S = S1 ∩ S2 ∩ ⋯ ∩ Sn−2

Pr[S] = Pr[S1] ⋅ Pr[S2 ∣ S1] ⋅ ⋯ ⋅ Pr[Sn−2 ∣ S1 ∩ ⋯ ∩ Sn−3]

Suppose the min-cut has  edges…k

Key observation: at anytime, the minimum degree ≥ k
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Karger’s algorithm
At -th step, graph has  edgesi ≥ (n − i + 1)k/2

Pr[contracting a min-cut edge] ≤
k

k(n − i + 1)/2
=

2
n − i + 1

Pr[find the min-cut] ≥
n−2

∏
i=1

n − i − 1
n − i + 1

=
2

n(n − 1)

Run Karger’s algorithm  times, and output the optimalc ⋅ n2

Pr[not output a min-cut] ≤ (1 −
2

n(n − 1) )
cn2

≤ e−c/2
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Expectation
Random variable:  is a function of all outcomesX : Ω → ℝ

Expectation: 

𝔼[X] = ∑ω∈Ω Pr[ω] ⋅ X(ω)

Another definition: (double counting)

𝔼[X] = ∑x∈ℝ x ⋅ Prω[X(ω) = x]

Warning: forget everything about conditional expectations
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Linearity of expectation
: set of outcomesΩ

: random variablesX1, X2, …, Xn

Linearity of expectation:

𝔼[X1 + X2 + ⋯ + Xn] = 𝔼[X1] + 𝔼[X2] + ⋯ + 𝔼[Xn]

Proof: 𝔼[X1 + X2] = ∑ω∈Ω Pr[ω] ⋅ (X1(ω) + X2(ω)) = 𝔼[X1] + 𝔼[X2]

Do not assume any independence here
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Linearity of expectation
Throw a dice twice and denoted by two independent r.v.s  X1, X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

𝔼[X1 + X2] = 1
36 ⋅ (2 + 3 + 3 + 4 + 4 + 4 + ⋯ + 11 + 11 + 12) = 7

Throw a dice once and denoted by two identical r.v.s  X1 = X2

𝔼[X1] = 𝔼[X2] = 1
6 ⋅ (1 + 2 + 3 + 4 + 5 + 6) = 7

2

𝔼[X1 + X2] = 1
6 ⋅ (2 + 4 + 6 + 8 + 10 + 12) = 7
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Random permutation
Consider a permutation  of  elementsπ = (π1, π2, …, πn) n

We say  is a fixed point if i πi = i

Question: if  is chosen randomly, how many fixed points ?π

, and Xi = 1 if πi = i Xi = 0 otherwise

𝔼[Xi] = Pr[Xi = 1] = Pr[πi = i] = (n − 1)!/n! = 1/n

𝔼[X] = ∑n
i=1 𝔼[Xi] = 1
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 types of couponsn

Each time draw a 
coupon from  types 
uniformly at random

n

Question: how many 
coupons drawn until 
collecting all types?
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Coupon collector
Let  be the number of coupons drawnX

Compute  by enumerating all possibilities?X

 : # of coupons until meet a new type, if having  types alreadyXi i

X = ∑n−1
i=0 Xi ⟹ 𝔼[X] = ∑n−1

i=0 𝔼[Xi]

But how to compute  ?𝔼[Xi]

1 2 3 4 5 6 7 8 … … X-3 X-2 X-1 X
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Pr[collect a new type  ∣  have i types already] = (n − i)/n
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Pr[collect a new type  ∣  have i types already] = (n − i)/n

Bernoulli trial: independent trials with success probability p

Question: how many trials until success?

𝔼 = ∑∞
k=1 k ⋅ p ⋅ (1 − p)k−1 = ∑∞

k=0 (1 − p)k = 1/p

𝔼[Xi] = n/(n − i)

𝔼[X] = ∑n−1
i=0 𝔼[Xi] = n∑n

i=1 1/i ≈ n ⋅ (ln n + γ)
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Do you feel lucky?
Expectation is a notion of  “average value”

Is it possible that do not collect all after too many times?

Suppose we have drawn  couponsn ln n + cn

Pr[do not collect type i] = (1 − 1/n)n ln n+cn < e−(ln n+c) = e−c/n

Union bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B]

Pr[do not collect all types] ≤ n ⋅ e−c/n = e−c
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Recall Quick-select algorithm…

Find a pivot, then divide and conquer

Modify the algorithm into a sorting algorithm:

Sort L and R respectively, then return L+M+R

6 3 1 5 4 2 7

3 1 4 2 5 6 7
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Quick-sort
Let  be the running time of sorting an -arrayT(n) n

If we choose pivots unluckily… T(n) = (n − 1) + T(n − 1)

… Too bad !T(n) = O(n2)

Now we choose pivots randomly…

Consider the expected running time …𝔼[T(n)]

𝔼[T(n)] = (n − 1) + 1
n ∑n−1

k=1 𝔼[T(k)] + 𝔼[T(n − k − 1)]
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Quick-sort
We guess that  for some constant 𝔼[T(n)] ≈ c ⋅ n ln n c

Prove by induction

More clever?

 is the number of comparisons!T(n)

Let  be the number of comparisons between  and Xij ai aj

𝔼[T(n)] = 𝔼[∑1≤i<j≤n Xij] = ∑1≤i<j≤n 𝔼[Xij]
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We only compare pivot with other variables

Assume ,  means  or  is pivot, and…ai < aj Xij = 1 ai aj

any  such that  are not chosen before taking  or ak ai < ak < aj ai aj

So ?Pr[Xij = 1] =

More clever? 

 of comparisons between -th smallest and -th smallestXij = # i j
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Quick-sort
Pick a random permutation π = (π1, π2, …, πn)

For any subsequence , choose pivot  with smallest [al, …, ar] ak πk

Pr[Xij = 1] = 2/( j − i + 1)

𝔼[T(n)] = ∑1≤i<j≤n 𝔼[Xij] = ∑1≤i<j≤n Pr[Xij = 1] = ∑i<j 2/( j − i + 1)

Let Hn = ∑n
i=1 1/i ≈ ln n + γ

𝔼[T(n)] = 2∑n−1
i=1 (Hn−i+1 − 1) ≤ 2(n − 1)(Hn − 1) ≤ 2n ln n
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Markov’s inequality
Markov’s inequality: Suppose  is a nonnegative r.v.X ≥ 0

Then for any , .C > 0 Pr[X ≥ C] ≤ 𝔼[X]
C

Proof: 𝔼[X] = ∑ω ω ⋅ Pr[X = ω] ≥ 0 ⋅ Pr[X < C] + C ⋅ Pr[X ≥ C]

Application: Randomized Quick-Sort

Recall that 𝔼[T(n)] ≤ 2n ln n

Pr[T(n) ≥ 2cn ln n] ≤ 1/c
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Beyond Markov’s inequality
Suppose , Markov’s inequality asserts X ≥ 0 Pr[X ≥ C]

How about ?Pr[X ≤ C]

“600 million Chinese people have monthly income ”≤ 1000

Chebyshev’s inequality: Pr[|X − 𝔼[X]| ≥ t] ≤ Var[X]/t2

Application in analysis: Weierstrass approximation theorem

More general: concentration of measures…
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Linearity may fail…
Linearity may fail if the number of r.v.s is infinite

Linearity may fail if the number of r.v.s is random

Let  be a random numberN

 are independently identically distributed (i.i.d.)X1, …, XN

We may expect 𝔼[X1 + X2 + ⋯ + XN] = 𝔼[N] ⋅ 𝔼[Xi]

Is it true?
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Random number of r.v.s
Throw a dice, and let  be the resultN

Then let  be  r.v.sX1 = X2 = ⋯ = XN = N N

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

However, 𝔼[X1 + ⋯ + XN] = 𝔼[N2] = 91
6 ≠ 𝔼[N]2

We may guess that this is because  are not independentX1, …, XN

How about randomly many independent r.v.s?
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St. Petersburg paradox
A gambler plays a game of guessing a fair (uniform) coin

At the first round, the gambler bets $1

If the gambler wins, they stops the game

If the gambler loses, they doubles the bet and guesses again

Clearly, at each round 𝔼[Xi] = 0

However, the gambler always stops with winning  ( )$1 ∑ Xi = 1
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Wald’s equation
Wald’s equation (simple version):

Suppose  is a r.v. bounded by , and independent of all N n Xi

Consider the random variable Xk ⋅ 1[X≥k]

Since  and  are independent, Xk 1[X≥k] 𝔼[Xk ⋅ 1[X≥k]] = 𝔼[Xk] ⋅ 𝔼[1[X≥k]]
Then 𝔼[X1 + ⋯ + XN] = ∑n

k=1 𝔼[Xk] ⋅ 𝔼[1[X≥k]]
In particular, if , 𝔼[Xk] = μ 𝔼[X1 + ⋯ + XN] = μ ⋅ 𝔼[N]
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Random number of r.v.s
Throw a dice, and let  be the resultN

Throw again and let  be the resultX1 = X2 = ⋯ = XN

Clearly, 𝔼[N] = 𝔼[Xi] = 7
2

Let . Then μ = 𝔼[Xi] = 7
2 μ ⋅ 𝔼[N] = 49

4

𝔼[X1 + ⋯ + XN] = 1
36 ⋅ (21 + 21 ⋅ 2 + ⋯ + 21 ⋅ 6) = 212

36 = 49
4



Random recurrence



KUW inequality



Quick-Select revisit



Coupon collector revisit



Yao’s lemma



Monte Carlo vs. Las Vegas



Complexity class



Enjoy the world of randomness !

Thank you


