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1 Poisson Distribution

Example 1. Suppose that there exists a restaurant. How canwe predict the nubmer of tomorrow’s
customers based on the number of customers in the past several days?
For instance, we assume that the number of customers in the past five days are: 100, 120, 80,
75 and 110. A natural idea is to use the average number (e.g., 97 in our instance) of the past.
However, with probability 1/2 or even greater, the restaurant may not prepare sufficient food.

To analyze the distribution of the number of customers, we should make some assumptions first.
Assume that there are n slots in a day. Every slot is sufficiently small s.t. at most one customer
comes into the restaurant in a slot and the probability of coming in each slot is p independently of
each other. Now let’s compute the distribution of the number of customers Xn (where we denote
p ·n by λ):

Pr[Xn = k] =
(

n

k

)
·pk · (1−p)n−k

=
(

n

k

)
·
(λ

n

)k(
1− λ

n

)n−k n→∞−→ λk

k !
e−λ .

Here we use the facts that
(n

k

)
/nk → 1, (1−λ/n)n → e−λ and (1−λ/n)k → 1 as n →∞ and k is a

constant. So Xn has a Poisson distribution.

Definition 2 (Poisson Distribution). A random variable X is said to have a Poisson distribution

with mean λ, or X ∼ Pois(λ), if

Pr[X = k] = λk

k !
·e−λ .

We can verify that the expectation of a Poisson with mean λ is indeed λ:

EX∼Pois(λ)[X ] =
∞∑

k=0
k · λ

k

k !
·e−λ =λ

∞∑
k=1

λk−1

(k −1)
·e−λ =λ

∞∑
k=0

λk

k !
·e−λ =λ .
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Remark. Let λ be a fixed constant. A Poisson distribution Pois(λ) is the limit of binomial dis-
tributions Binom(n,λ/n) as n → ∞. If n is sufficiently large, Binom(n,λ/n) is approximately
Pois(λ).

Question. What is the distribution of two days’ customers?

Fact 1. Suppose that X1 ∼ Pois(λ1) and X2 ∼ Pois(λ2) are independent. Then

X1 +X2 ∼ Pois(λ1 +λ2) .

Proof. We calculate the distribution of X1 +X2 directly:

Pr[X1 +X2 = n] =
n∑

m=0
Pr[X1 = m ∧X2 = n −m]

=
n∑

m=0
Pr[X1 = m] ·Pr[X2 = n −m]

=
n∑

m=0

λm
1

m!
·e−λ1 · λn−m

2

(n −m)!
·e−λ2

= e−(λ1+λ2)
n∑

m=0

λm
1 λn−m

2

n!
·
(

n

m

)

= (λ1 +λ2)n

n!
·e−(λ1+λ2) .

It is easy to extend the fact to a sequence of independent Poissons and yield the following propo-
sition.

Proposition 2. Suppose that X1, X2, . . . , Xn are n mutually independent random variables, where

Xi ∼ Pois(λi ). Then
n∑

i=1
Xi ∼ Pois

( n∑
i=1

λ j

)
.

In particular, if X1, X2, . . . , Xn are i.i.d. Poissons with mean λ, then
∑n

i=1 Xi ∼ Pois(nλ).

2 Defining the Poisson Process

Note that in Proposition 2, n is not necessary an integer. Now we introduce the Poisson process.

Definition 3 (Poisson Process). A Poisson process {N (s) : s ≥ 0} with rate λ satisfies that

1. N (0) = 0;
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2. ∀ t , s ≥ 0, N (t + s)−N (s) ∼ Pois(λ · t );

3. ∀ t0 ≤ t1 ≤ ·· · ≤ tn , N (t1)−N (t0), N (t2)−N (t1), . . . , N (tn)−N (tn−1) are mutually indepen-
dent.

In fact, the Poisson process has another constructive definition. We first recall the exponential
distribution mentioned in the first lecture.

Definition 4 (Exponential distribution). The probability density function of the exponential dis-
tribution with rate λ> 0 is given by

f (x) =

λe−λx , x ≥ 0;

0, otherwise .

So the cumulative probability function of X ∼ Exponential(λ) is

FX (x) = Pr[X ≤ k] =
∫ k

−∞
f (x)dx = 1−e−λk .

Then the following proposition gives another definition of the Poisson process.

Proposition 3. Suppose that τ1,τ2, . . . ,τn , . . . is a sequence of independent random variables that

each r.v. has an exponential distribution with rate λ (i.e., τi ∼ Exponential(λ)). Let Tn =∑n
i=1τi and

N (s)≜max{n : Tn ≤ s} .

Then N (s) is a Poisson process with rate λ.

τ1 τ2 τ3 τ4

T0 T1 T2 T3 T4s

Before we prove this proposition (and the equivalence of the two definitions), we are going to
discuss some properties of the exponential distribution.

Fact 4. Let X ∼ Exponential(λ). Then E[X ] = 1/λ.

Proof. We calculate the expectation directly.

E[X ] =
∫ ∞

0
t ·λe−λt dt =−

∫ ∞

0
t de−λt

= (−t ·e−λt )∣∣∣∞
0
+

∫ ∞

0
e−λt dt

=− 1

λ
· (e−λt )∣∣∣∞

0
=−1/λ .
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Remark. We think of the τn as times between arrivals of customers at the restaurant, so Tn =
τ1+·· ·+τn is the arrival time of the n-th customer, and N (s) is the number of arrivals by time s.
So 1/λ measures the average of times between arrivals — the average of τi is 1/λ.
Note that in Definition 3, the rate λ measures the average increments of arrivals in units of time.
Intuitively, the quantity measured by λ in Proposition 3 is consistent with the quantity measured
by λ in Definition 3.

Fact 5. Let X ∼ Exponential(λ). Then E
[

X 2
]= 2/λ2.

Proof. Again, we calculate it directly.

E
[

X 2]= ∫ ∞

0
t 2 ·λe−λt dt =−

∫ ∞

0
t 2 de−λt

= (−t 2 ·e−λt )∣∣∣∞
0
+

∫ ∞

0
e−λt dt 2

= 2
∫ ∞

0
t ·e−λt dt = E[X ] ·2/λ = 2/λ2 .

Corollary 6. Let X ∼ Exponential(λ). Then Var [X ] = 1/λ2.

Moreover, the exponential distribution has the following property (that may be a bit surprising).
This property somewhat explains the mutual independence in Definition 3.

Proposition 7 (Lack of Memory Property). Let X ∼ Exponential(λ). Then for all t , s > 0,

Pr[X > t + s | X > s] = Pr[X > t ] .

Proof. It is easy to verify that

Pr[X > t + s | X > s] = Pr[X > t + s ∧X > s]

Pr[X > s]
= Pr[X > t + s]

Pr[X > s]

= e−λ(t+s)

e−λs
= e−λt = Pr[X > t ] .

Now we introduce another property of the exponential distribution. It will be useful in the next
lecture.

Proposition 8 (Exponential Races). Let X1 ∼ Exponential(λ1) and X2 ∼ Exponential(λ2) be two

independent random variables. Then Y ≜min{X1, X2} ∼ Exponential(λ1 +λ2).

Proof. Using the independence we can have

Pr[Y > t ] = Pr[min{X1, X2} > t ]

= Pr[X1 > t ∧X2 > t ]

= Pr[X1 > t ] ·Pr[X2 > t ]

= e−λ1t ·e−λ2t = e−(λ1+λ2)t .
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Corollary 9. Let X1, X2, . . . , Xn be n mutually independent random variables where Xi has an ex-

ponential distribution with rate λi . Then Y ≜ min{X1, X2, . . . , Xn} has an exponential distribution

with rate λ1 +λ2 +·· ·+λn .

We now consider the problem “who wins the race?”. We first assume that there are only two
random variables. Using the law of total probability, we can compute the probability that X1

wins the race as follows:

Pr[X1 ≤ X2] =
∫ ∞

0
Pr[X1 = t ∧X2 ≥ t ]dt

=
∫ ∞

0
Pr[X1 = t ] ·Pr[X2 ≥ t ]dt

=
∫ ∞

0
λ1e−λ1t ·e−λ2t dt

=λ1

∫ ∞

0
e−(λ1+λ2)t dt

= λ1

λ1 +λ2
.

Thus, clearly, the probability that Xi wins the race among n random variables is λi
λ1+λ2+···+λn

.

3 Proof of Proposition 3

Now we are ready to prove Proposition 3. We first consider the distribution of Tn .

Theorem 10. Let τ1,τ2, . . . ,τn be n mutually independent random variables where each τi has an

distribution with rate λ. Then Tn ≜ τ1+·· ·+τn has a gamma distribution Gamma(n,λ), where the

probability density function of Gamma(n,λ) is given by

fn,λ(t ) =

λe−λt · (λt )n−1

(n−1)! , t ≥ 0;

0, t < 0.

Proof. We prove it by induction.
Suppose that n = 1. Then T1 = τ1 ∼ Exponential(λ). On the other hand, the probability density
function of Gamma(1,λ) is

f1,λ(t ) =λe−λt for t ≥ 0,

which is the same as the probability function of Exponential(λ).
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Suppose that Tn ∼Gamma(n,λ) for some n ≥ 1. We now consider the distribution of Tn+1. Using
the independence of Tn and τn+1, we have

Pr[Tn+1 = t ] =
∫ t

0
Pr[Tn = s] ·Pr[τn+1 = t − s]ds

=
∫ t

0
fn,λ(t ) ·λe−λ(t−s) ds

=
∫ t

0
λe−λs · (λs)n−1

(n −1)!
·λe−λ(t−s) ds

=λe−λt · λn

(n −1)!
·
∫ t

0
sn−1 ds

=λe−λt · λn

(n −1)!
· t n

n
= fn+1,λ(t ) .

Next, we are going to give a proof of Proposition 3.

Proof of Proposition 3. Let N (s) be the random variable constructed in Proposition 3. It is clear
that N (0) = 0 with probability 1. So we begin our proof by verifying that N (t ) ∼ Pois(λt ):

Pr[N (t ) = n] = Pr[Tn ≤ t ∧Tn+1 > t ]

=
∫ t

0
Pr[Tn = s] ·Pr[τn+1 > t − s]ds

=
∫ t

0
λe−λs · (λs)n−1

(n −1)!
·e−λ(t−s) ds

=λe−λt · λn−1

(n −1)!

∫ t

0
sn−1 ds

=λne−λt · t n

n!
.

Thus N (t ) ∼ Pois(λt ). For s > 0, we would like to show that N (t + s)−N (s) ∼ Pois(λt ).

τ1 τ2 τ3 τ4

T0 T1 T2 T3 T4s

A Poisson process

A new Poisson process

Let n = N (s). Using the lack of memory property, it is clear that for any t > 0,

Pr[τn+1 > s + t −Tn | τn+1 > s −Tn] = Pr[τn+1 > t ] = Pr[τ1 > t ] .
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So the distribution of the first arrival after s is the same as Exponential(λ). Applying the in-
dependence of τ1,τ2, . . . ,τn , . . . we conclude that the process starting from time s has the same
distribution as the original process. That is, N (t + s)−N (s) ∼ Pois(λt ).
Furthermore, it is easy to see that N (t + s)−N (s) is independent of N (r ) for all r ≤ s since for
any s, N (t + s)− N (s) ∼ Pois(λt ). It implies that N (s) has independent increments, and hence
completes our proof of Proposition 3.
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