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1 Brownian Motion

Brownian motion describes the random motion of small particles
suspended in a liquid or in a gas. This process was named after the
botanist Robert Brown, who observed and studied a jittery motion
of pollen grains suspended in water under a microscope. Later, Al-
bert Einstein gave a physical explanation of this phenomenon. In
mathematics, Brownian motion is characterized by the Wiener pro-
cess, named after Norbert Wiener, a famous mathematician and the
originator of cybernetics.

To motivate the definition of Brownian motion, we start from the
1-D random walk starting from 0. Let Zt be our position at time t
and Xt be the move of the t-th step. The value of Xt is chosen from
{−1,1} uniformly at random. Note that Z0 = 0 and Zt+1 = Zt +Xt . So
ZT =

∑T−1
t=0 Xt . Then we have

E [ZT ] = 0 and Var [ZT ] =
T−1∑
t=0

Var [Xt] = T .

Suppose now we move with every ∆t seconds and with step length

δ. Then our position at time T is Z(T ) = δ
∑ T

∆t
t=1Xt . We are interested in

the behavior of the prcoess when ∆t→ 0. We have

E [Z(T )] = 0 and Var [Z(T )] = δ2
T
∆t∑
t=1

Var [Xt] = δ2 · T
∆t

.

We can identify the expectation and the variance of this process
with the discrete random walk when ∆t → 0 by choosing δ =

√
∆t. It

follows from the central limit theorem that

Z(T ) =
√
∆t

T
∆t∑
t=1

Xt
∆t→0−→

√
∆tN (0,

T
∆t

) =N (0,T ).

In other words, the “continuous” version of the 1-D random walk
followsN (0,T ) at time T . This is the basis of the Wiener process.
Now we introduce its formal definition.

Definition 1 (Standard Brownian Motion / Wiener Process). We say
a stochastic process {W (t)}t≥0 is a standard Brownian motion or Wiener
process if it satisfies

• W (0) = 0;
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• Independent increments: ∀0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, W (t1) −W (t0),
W (t2)−W (t1), . . . , W (tn)−W (tn−1) are mutually independent;

• Stationary increments: ∀s, t > 0, W (s + t)−W (s) ∼N (0, t);

• W (t) is continuous almost surely.1 1 Let Ω be the sample space. Then
W can be viewed as a mapping from
� ×Ω to � . The meaning of “W (t) is
continuous almost surely” is: ∃Ω0 ⊆ Ω

with Pr [Ω0] = 1 such that ∀ω ∈ Ω0,
W (t,ω) is continuous with regard to t.

Recall that the probability density of the Gaussian distribution
N (µ,σ2) is

fN (µ,σ2)(x) =
1

σ
√
2π

exp
(
−
(x −µ)2

2σ2

)
.

We use Φ(·) to denote the CDF of N (0,1), namely Φ(t) =
∫ t

−∞ fN (0,1)(x)dx.
In the following, we use ft(x) to denote the probability density of

N (0, t). For any t1 ≤ t2 ≤ . . . tn, the joint density of W (t1),W (t2), . . . ,W (tn)
is

f (x1, . . . ,xn) = ft1(x1)ft2−t1(x2 − x1) . . . ftn−tn−1(xn − xn−1)

Example 1. Let 0 ≤ s ≤ t. We can compute the conditional distribution
of X(s) when X(t) = y. We use fs|t(x|y) to denote the probability density of
X(s) = x conditioned X(t) = y. Clearly

fs|t(x|y) =
fs(x)ft−s(y − x)

ft(y)
= C · exp

(
−
(x − ys/t)2

2s(t − s)/t

)
,

where C is some universal constant irrelevant to x,y, s, t. As a result, the
conditional distribution is the Gaussian N ( st y,

s
t (t − s)).

Let {W (t)}t≥0 be a a standard Brownian motion. If {X(t)}t≥0 satisfies
X(t) = µ ·t+σW (t), we call {X(t)}t≥0 a (µ,σ2) Brownian motion. Clearly,
X(t) ∼N (µt,σ2t).

2 The Hitting Time of a Brownian Motion

We consider the first arrivial time of position b in a Brownian motion.
This is called the hitting time of b. Let us first consider the standard
Brownian motion {W (t)}. Define τb ≜ inf {t ≥ 0 |W (t) > b}. For any
t > 0,

Pr [τb < t] = Pr [τb < t ∧W (t) > b] +Pr [τb < t ∧W (t) < b]

= Pr [W (t) > b] +Pr [W (t) < b | τb < t] ·Pr [τb < t] .

Note that W (t) ∼ N (0, t). Let Φ be the cumulative distribution func-

tion of standard Gaussian distribution, that is, Φ(x) = 1√
2π

∫ x

−∞ e−
t2
2 dt.

Then

Pr [W (t) > b] = Pr
[
W (t)
√
t

>
b
√
t

]
= 1−Φ

(
b
√
t

)
.

This is called the principle of reflection of
a standard Brownian motion.
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Assuming we have known the value of τb and τb < t, we can regard
{W (t)}t≥τb as a Brownian motion starting from b. Thus, as Figure 1
shows, Pr [W (t) < b | τb < t] = 1

2 .

By direct calculation, we have Pr [τb < t] = 2
(
1−Φ

(
b√
t

))
.

b

τb t

Figure 1: The hitting time and
the reflection principle

It is more challenging to find the hitting time of a (µ,σ2) Brownian
motion. The main difficulty is that the principle of reflection no long
holds when a nonzero drift µ is present.

We can overcome the difficulty by leveraging the following useful
lemma.

Lemma 2. Let Y1, . . . ,Yn be i.i.d. N (θ,ν2) random variables. Then the
distribution of (Y1, . . . ,Yn) conditioned on

∑n
i=1Yi = y is irrelevant to θ.

Proof. Let X =
∑n

i=1Yi . We use fY1,...,Yn |X to denote the density of
Y1, . . . ,Yn conditioned on X. Then

fY1,...,Yn |X (y1, . . . , yn,x) =
fY1,...,Yn ,X (y1, . . . , yn,x)

fX (x)

=
fY1,...,Yn (y1, . . . , yn−1,x −

∑n−1
i=1 yi )

fX (x)

∼
exp

(
− (x−

∑n−1
i=1 yi−θ)2

2ν2

)∏n−1
i=1 exp

(
− (yi−θ)2

2ν2

)
exp

(
− (x−nθ)2

2nν2

) .

A direct calculation shows that all terms on θ cancel and therefore Here A ∼ B means A = c · B for some
universal constant c.the lemma is proved.

The following corollary is immediate since all relevant random
variables can be expressed as the sum of independent Gaussians.

Corollary 3. Let {X(t)}t≥0 be a (µ,σ2) Brownian motion. Conditioned on
X(t) = x, for any t1 ≤ t2 . . . tn ≤ t, the joint distribution of (X(t1),X(t2), . . . ,X(tn))
is the same for all µ.

Armed with this, we can calculate the hitting time of a (µ,σ2) Brow-
nian motion.
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Lemma 4. Let X(t) be a (µ,σ2) Brownian motion. For any y > x,

Pr
[
τy ≤ t

∣∣∣ X(t) = x
]
= e
− 2y(y−x)

tσ2 .

Proof. Applying Corollary 3, we know that Pr
[
τy ≤ t

∣∣∣ X(t) = x
]
=

Pr
[
τ′y ≤ t

∣∣∣ X ′(t) = x
]
where X ′(t) is a N (0,σ2) Brownian motion and τ′y

is the hitting time X ′(t). It is not completely rigorous here since
Corollary 3 only applies to the joint
distribution of finite many random
variables. Nevertheless, it is conceivable
that the same holds for the whole
process X(t).

Consider an infinitesimal change dx. It holds that

Pr
[
τ′y ≤ t

∣∣∣ X ′(t) ∈ [x,x +dx]
]
=
Pr

[
τ′y ≤ t ∧X ′(t) ∈ [x,x +dx]

]
Pr [X ′(t) ∈ [x +dx]]

.

Since Pr [X ′(t) ∈ [x +dx]] = fX ′(t)(x)dx, we only need to calculate the
numerator. Note that

Pr
[
τ′y ≤ t ∧X ′(t) ∈ [x,x +dx]

]
= Pr

[
τ′y ≤ t

]
·Pr

[
X ′(t) ∈ [x,x +dx]

∣∣∣ τ′y ≤ t
]
.

Applying the principle of reflection, the above is equal to

Pr
[
τ′y ≤ t

]
·Pr

[
X ′(t) ∈ [2y − x −dx,2y − x]

∣∣∣ τ′y ≤ t
]
= Pr

[
X ′(t) ∈ [2y − x −dx,2y − x]∧ τ′y ≤ t

]
= Pr

[
X ′(t) ∈ [2y − x −dx,2y − x]

]
= fX ′(t)(2y − x)dx

The second equality is due to that dx is infinitesimal and therefore
x +dx < y. As a result, we have

Pr
[
τy ≤ t

∣∣∣ X ′(t) = x
]
=
fX ′(t)(2y − x)

fX ′(t)(x)
= e
− 2y(y−x)

tσ2 .

We are now ready to compute the hitting time τy . When y ≤ x,

clearly Pr
[
τy ≤ t

∣∣∣ X(t) = y
]
= 1. Therefore,

Pr
[
τy ≤ t

]
=

∫ ∞
−∞

Pr
[
τy ≤ t

∣∣∣ X(t) = x
]
· fX(t)(x)dx

=
∫ y

−∞
Pr

[
τy ≤ t

∣∣∣ X(t) = x
]
· fX(t)(x)dx +Pr [X(t) ≥ y]

=
∫ y

−∞
e
− 2y(y−x)

tσ2 · 1
√
2πtσ2

e
− (x−µt)2

2tσ2 dx +
(
1−Φ

(
y −µt
σ
√
t

))
= e

2yµ
σ2

(
1−Φ

(
µt + y

σ
√
t

))
+
(
1−Φ

(
y −µt
σ
√
t

))
.
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