[AI2613 Lecture 11] Brownian Motion

May 14, 2023

1 Brownian Motion

Brownian motion describes the random motion of small particles suspended in a liquid or in a gas. This process was named after the botanist Robert Brown, who observed and studied a jittery motion of pollen grains suspended in water under a microscope. Later, Albert Einstein gave a physical explanation of this phenomenon. In mathematics, Brownian motion is characterized by the Wiener process, named after Norbert Wiener, a famous mathematician and the originator of cybernetics.

To motivate the definition of Brownian motion, we start from the 1 -D random walk starting from 0 . Let Z_{t} be our position at time t and X_{t} be the move of the t-th step. The value of X_{t} is chosen from $\{-1,1\}$ uniformly at random. Note that $Z_{0}=0$ and $Z_{t+1}=Z_{t}+X_{t}$. So $Z_{T}=\sum_{t=0}^{T-1} X_{t}$. Then we have

$$
\mathbf{E}\left[Z_{T}\right]=0 \text { and } \operatorname{Var}\left[Z_{T}\right]=\sum_{t=0}^{T-1} \operatorname{Var}\left[X_{t}\right]=T
$$

Suppose now we move with every Δt seconds and with step length δ. Then our position at time T is $Z(T)=\delta \sum_{t=1}^{\frac{T}{\Delta t}} X_{t}$. We are interested in the behavior of the prcoess when $\Delta t \rightarrow 0$. We have

$$
\mathbf{E}[Z(T)]=0 \text { and } \operatorname{Var}[Z(T)]=\delta^{2} \sum_{t=1}^{\frac{T}{\Delta t}} \operatorname{Var}\left[X_{t}\right]=\delta^{2} \cdot \frac{T}{\Delta t}
$$

We can identify the expectation and the variance of this process with the discrete random walk when $\Delta t \rightarrow 0$ by choosing $\delta=\sqrt{\Delta t}$. It follows from the central limit theorem that

$$
Z(T)=\sqrt{\Delta t} \sum_{t=1}^{\frac{T}{\Delta t}} X_{t} \xrightarrow{\Delta t \rightarrow 0} \sqrt{\Delta t} \mathcal{N}\left(0, \frac{T}{\Delta t}\right)=\mathcal{N}(0, T) .
$$

In other words, the "continuous" version of the 1-D random walk follows $\mathcal{N}(0, T)$ at time T. This is the basis of the Wiener process. Now we introduce its formal definition.

Definition 1 (Standard Brownian Motion / Wiener Process). We say a stochastic process $\{W(t)\}_{t \geq 0}$ is a standard Brownian motion or Wiener process if it satisfies

- $W(0)=0$;
- Independent increments: $\forall 0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{n}, W\left(t_{1}\right)-W\left(t_{0}\right)$, $W\left(t_{2}\right)-W\left(t_{1}\right), \ldots, W\left(t_{n}\right)-W\left(t_{n-1}\right)$ are mutually independent;
- Stationary increments: $\forall s, t>0, W(s+t)-W(s) \sim \mathcal{N}(0, t)$;
- $W(t)$ is continuous almost surely. ${ }^{1}$

Recall that the probability density of the Gaussian distribution $N\left(\mu, \sigma^{2}\right)$ is

$$
f_{N\left(\mu, \sigma^{2}\right)}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

We use $\Phi(\cdot)$ to denote the CDF of $N(0,1)$, namely $\Phi(t)=\int_{-\infty}^{t} f_{N(0,1)}(x) \mathrm{d} x$.
In the following, we use $f_{t}(x)$ to denote the probability density of $N(0, t)$. For any $t_{1} \leq t_{2} \leq \ldots t_{n}$, the joint density of $W\left(t_{1}\right), W\left(t_{2}\right), \ldots, W\left(t_{n}\right)$ is

$$
f\left(x_{1}, \ldots, x_{n}\right)=f_{t_{1}}\left(x_{1}\right) f_{t_{2}-t_{1}}\left(x_{2}-x_{1}\right) \ldots f_{t_{n}-t_{n-1}}\left(x_{n}-x_{n-1}\right)
$$

Example 1. Let $0 \leq s \leq t$. We can compute the conditional distribution of $X(s)$ when $X(t)=y$. We use $f_{s \mid t}(x \mid y)$ to denote the probability density of $X(s)=x$ conditioned $X(t)=y$. Clearly

$$
f_{s \mid t}(x \mid y)=\frac{f_{s}(x) f_{t-s}(y-x)}{f_{t}(y)}=C \cdot \exp \left(-\frac{(x-y s / t)^{2}}{2 s(t-s) / t}\right)
$$

where C is some universal constant irrelevant to x, y, s, t. As a result, the conditional distribution is the Gaussian $N\left(\frac{s}{t} y, \frac{s}{t}(t-s)\right)$.

Let $\{W(t)\}_{t \geq 0}$ be a a standard Brownian motion. If $\{X(t)\}_{t \geq 0}$ satisfies $X(t)=\mu \cdot t+\sigma W(t)$, we call $\{X(t)\}_{t \geq 0}$ a $\left(\mu, \sigma^{2}\right)$ Brownian motion. Clearly, $X(t) \sim N\left(\mu t, \sigma^{2} t\right)$.

2 The Hitting Time of a Brownian Motion

We consider the first arrivial time of position b in a Brownian motion. This is called the hitting time of b. Let us first consider the standard Brownian motion $\{W(t)\}$. Define $\tau_{b} \triangleq \inf \{t \geq 0 \mid W(t)>b\}$. For any $t>0$,

$$
\begin{aligned}
\operatorname{Pr}\left[\tau_{b}<t\right] & =\operatorname{Pr}\left[\tau_{b}<t \wedge W(t)>b\right]+\operatorname{Pr}\left[\tau_{b}<t \wedge W(t)<b\right] \\
& =\operatorname{Pr}[W(t)>b]+\operatorname{Pr}\left[W(t)<b \mid \tau_{b}<t\right] \cdot \operatorname{Pr}\left[\tau_{b}<t\right] .
\end{aligned}
$$

Note that $W(t) \sim \mathcal{N}(0, t)$. Let Φ be the cumulative distribution function of standard Gaussian distribution, that is, $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t$. Then

$$
\operatorname{Pr}[W(t)>b]=\operatorname{Pr}\left[\frac{W(t)}{\sqrt{t}}>\frac{b}{\sqrt{t}}\right]=1-\Phi\left(\frac{b}{\sqrt{t}}\right) .
$$

${ }^{1}$ Let Ω be the sample space. Then W can be viewed as a mapping from $\mathbb{R} \times \Omega$ to \mathbb{R}. The meaning of " $W(t)$ is continuous almost surely" is: $\exists \Omega_{0} \subseteq \Omega$ with $\operatorname{Pr}\left[\Omega_{0}\right]=1$ such that $\forall \omega \in \Omega_{0}$, $W(t, \omega)$ is continuous with regard to t.

Assuming we have known the value of τ_{b} and $\tau_{b}<t$, we can regard $\{W(t)\}_{t \geq \tau_{b}}$ as a Brownian motion starting from b. Thus, as Figure 1 shows, $\operatorname{Pr}\left[W(t)<b \mid \tau_{b}<t\right]=\frac{1}{2}$.

By direct calculation, we have $\operatorname{Pr}\left[\tau_{b}<t\right]=2\left(1-\Phi\left(\frac{b}{\sqrt{t}}\right)\right)$.

It is more challenging to find the hitting time of a $\left(\mu, \sigma^{2}\right)$ Brownian motion. The main difficulty is that the principle of reflection no long holds when a nonzero drift μ is present.

We can overcome the difficulty by leveraging the following useful lemma.

Lemma 2. Let Y_{1}, \ldots, Y_{n} be i.i.d. $N\left(\theta, v^{2}\right)$ random variables. Then the distribution of $\left(Y_{1}, \ldots, Y_{n}\right)$ conditioned on $\sum_{i=1}^{n} Y_{i}=y$ is irrelevant to θ.

Proof. Let $X=\sum_{i=1}^{n} Y_{i}$. We use $f_{Y_{1}, \ldots, Y_{n} \mid X}$ to denote the density of Y_{1}, \ldots, Y_{n} conditioned on X. Then

$$
\begin{aligned}
f_{Y_{1}, \ldots, Y_{n} \mid X}\left(y_{1}, \ldots, y_{n}, x\right) & =\frac{f_{Y_{1}, \ldots, Y_{n}, X}\left(y_{1}, \ldots, y_{n}, x\right)}{f_{X}(x)} \\
& =\frac{f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n-1}, x-\sum_{i=1}^{n-1} y_{i}\right)}{f_{X}(x)} \\
& \sim \frac{\exp \left(-\frac{\left(x-\sum_{i=1}^{n-1} y_{i}-\theta\right)^{2}}{2 v^{2}}\right) \prod_{i=1}^{n-1} \exp \left(-\frac{\left(y_{i}-\theta\right)^{2}}{2 v^{2}}\right)}{\exp \left(-\frac{(x-n \theta)^{2}}{2 n v^{2}}\right)} .
\end{aligned}
$$

A direct calculation shows that all terms on θ cancel and therefore the lemma is proved.

The following corollary is immediate since all relevant random variables can be expressed as the sum of independent Gaussians.

Figure 1: The hitting time and the reflection principle

Corollary 3. Let $\{X(t)\}_{t \geq 0}$ be a $\left(\mu, \sigma^{2}\right)$ Brownian motion. Conditioned on $X(t)=x$, for any $t_{1} \leq t_{2} \ldots t_{n} \leq t$, the joint distribution of $\left(X\left(t_{1}\right), X\left(t_{2}\right), \ldots, X\left(t_{n}\right)\right)$ is the same for all μ.

Armed with this, we can calculate the hitting time of a $\left(\mu, \sigma^{2}\right)$ Brownian motion.

Lemma 4. Let $X(t)$ be a $\left(\mu, \sigma^{2}\right)$ Brownian motion. For any $y>x$,
$\operatorname{Pr}\left[\tau_{y} \leq t \mid X(t)=x\right]=e^{-\frac{2 y(y-x)}{t \sigma^{2}}}$.
Proof. Applying Corollary 3, we know that $\operatorname{Pr}\left[\tau_{y} \leq t \mid X(t)=x\right]=$ $\operatorname{Pr}\left[\tau_{y}^{\prime} \leq t \mid X^{\prime}(t)=x\right]$ where $X^{\prime}(t)$ is a $N\left(0, \sigma^{2}\right)$ Brownian motion and τ_{y}^{\prime} is the hitting time $X^{\prime}(t)$.

Consider an infinitesimal change $\mathrm{d} x$. It holds that

$$
\operatorname{Pr}\left[\tau_{y}^{\prime} \leq t \mid X^{\prime}(t) \in[x, x+\mathrm{d} x]\right]=\frac{\operatorname{Pr}\left[\tau_{y}^{\prime} \leq t \wedge X^{\prime}(t) \in[x, x+\mathrm{d} x]\right]}{\operatorname{Pr}\left[X^{\prime}(t) \in[x+\mathrm{d} x]\right]}
$$

It is not completely rigorous here since Corollary 3 only applies to the joint distribution of finite many random variables. Nevertheless, it is conceivable that the same holds for the whole process $X(t)$.

Since $\operatorname{Pr}\left[X^{\prime}(t) \in[x+\mathrm{d} x]\right]=f_{X^{\prime}(t)}(x) \mathrm{d} x$, we only need to calculate the numerator. Note that
$\operatorname{Pr}\left[\tau_{y}^{\prime} \leq t \wedge X^{\prime}(t) \in[x, x+\mathrm{d} x]\right]=\operatorname{Pr}\left[\tau_{y}^{\prime} \leq t\right] \cdot \operatorname{Pr}\left[X^{\prime}(t) \in[x, x+\mathrm{d} x] \mid \tau_{y}^{\prime} \leq t\right]$.
Applying the principle of reflection, the above is equal to

$$
\begin{aligned}
\operatorname{Pr}\left[\tau_{y}^{\prime} \leq t\right] \cdot \operatorname{Pr}\left[X^{\prime}(t) \in[2 y-x-\mathrm{d} x, 2 y-x] \mid \tau^{\prime} y \leq t\right] & =\operatorname{Pr}\left[X^{\prime}(t) \in[2 y-x-\mathrm{d} x, 2 y-x] \wedge \tau_{y}^{\prime} \leq t\right] \\
& =\operatorname{Pr}\left[X^{\prime}(t) \in[2 y-x-\mathrm{d} x, 2 y-x]\right] \\
& =f_{X^{\prime}(t)}(2 y-x) \mathrm{d} x
\end{aligned}
$$

The second equality is due to that $\mathrm{d} x$ is infinitesimal and therefore $x+\mathrm{d} x<y$. As a result, we have

$$
\operatorname{Pr}\left[\tau_{y} \leq t \mid X^{\prime}(t)=x\right]=\frac{f_{X^{\prime}(t)}(2 y-x)}{f_{X^{\prime}(t)}(x)}=e^{-\frac{2 y(y-x)}{t \sigma^{2}}}
$$

We are now ready to compute the hitting time τ_{y}. When $y \leq x$, clearly $\operatorname{Pr}\left[\tau_{y} \leq t \mid X(t)=y\right]=1$. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[\tau_{y} \leq t\right] & =\int_{-\infty}^{\infty} \operatorname{Pr}\left[\tau_{y} \leq t \mid X(t)=x\right] \cdot f_{X(t)}(x) \mathrm{d} x \\
& =\int_{-\infty}^{y} \operatorname{Pr}\left[\tau_{y} \leq t \mid X(t)=x\right] \cdot f_{X(t)}(x) \mathrm{d} x+\operatorname{Pr}[X(t) \geq y] \\
& =\int_{-\infty}^{y} e^{-\frac{2 y(y-x)}{t \sigma^{2}}} \cdot \frac{1}{\sqrt{2 \pi t \sigma^{2}}} e^{-\frac{(x-\mu t)^{2}}{2 t \sigma^{2}}} \mathrm{~d} x+\left(1-\Phi\left(\frac{y-\mu t}{\sigma \sqrt{t}}\right)\right) \\
& =e^{\frac{2 y \mu}{\sigma^{2}}}\left(1-\Phi\left(\frac{\mu t+y}{\sigma \sqrt{t}}\right)\right)+\left(1-\Phi\left(\frac{y-\mu t}{\sigma \sqrt{t}}\right)\right)
\end{aligned}
$$

