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1 Gaussian Processes and Brownian Motion

In the last lecture, we defined the standard Brownian motion:

Definition 1 (Standard Brownian Motion / Wiener Process). We say a
stochastic process {𝑊 (𝑡)}𝑡≥0 is a standard Brownian motion or Wiener process
if it satisfies

• 𝑊 (0) = 0;

• Independent increments: ∀0 ≤ 𝑡0 ≤ 𝑡1 ≤ · · · ≤ 𝑡𝑛 ,𝑊 (𝑡1) −𝑊 (𝑡0),
𝑊 (𝑡2) −𝑊 (𝑡1), . . . ,𝑊 (𝑡𝑛) −𝑊 (𝑡𝑛−1) are mutually independent;

• Stationary increments: ∀𝑠, 𝑡 > 0,𝑊 (𝑠 + 𝑡) −𝑊 (𝑠) ∼ N (0, 𝑡);

• 𝑊 (𝑡) is continuous almost surely.1 1 Let Ω be the sample space. Then𝑊 can be
viewed as a mapping from ℝ × Ω to ℝ. The
meaning of “𝑊 (𝑡 ) is continuous almost
surely” is: ∃Ω0 ⊆ Ω with Pr [Ω0 ] = 1 such
that ∀𝜔 ∈ Ω0,𝑊 (𝑡,𝜔 ) is continuous with
regard to 𝑡 .

Today we will give another characterization of Brownian motions in
terms of the Gaussian process. First recall the notion of high dimensional
Gaussian distribution. A vector of random variables (𝑋1, 𝑋2, . . . , 𝑋𝑛) is said
to be Gaussian iff ∀𝑎1, 𝑎2, . . . , 𝑎𝑛 ,

∑𝑛
𝑖=1 𝑎𝑖𝑋𝑖 is a one-dimensional Gaussian.

Let 𝜇 = (𝜇1, 𝜇2, . . . , 𝜇𝑛) where 𝜇𝑖 = E [𝑋𝑖 ]. Let Σ =
(
Cov(Xi,Xj)

)
𝑖, 𝑗 . Then the

probability density function 𝑓 of (𝑋1, 𝑋2, . . . , 𝑋𝑛) is

for 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑓 (𝑥) = (2𝜋)− 𝑛
2 · |detΣ|− 1

2 · 𝑒− 1
2 (𝑥−𝜇 )𝑇 Σ−1 (𝑥−𝜇 ) .

Definition 2 (Gaussian Process). A stochastic process {𝑋 (𝑡)}𝑡≥0 is called
Gaussian process if ∀0 ≤ 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛 , (𝑋 (𝑡1), 𝑋 (𝑡2), . . . , 𝑋 (𝑡𝑛)) is
Gaussian.

Note that a Gaussian vector can be characterized by its mean vector and
the covariance matrix. Standard Brownian motion is a special family of
Gaussian processes where the covariance of 𝑋 (𝑠) and 𝑋 (𝑡) is 𝑠 ∧ 𝑡 .

Definition 3 (Standard Brownian Motion/Standard Wiener Process). We
say a stochastic process {𝑊 (𝑡)}𝑡≥0 is a standard Brownian motion or Wiener
process if it satisfies

• {𝑊 (𝑡)}𝑡≥0 is an almost surely continuous Gaussian Process;

• ∀𝑠 ≥ 0, E [𝑊 (𝑠)] = 0;

• ∀0 ≤ 𝑠 ≤ 𝑡 , Cov(𝑊 (𝑠),𝑊 (𝑡)) = 𝑠 .

We will show that it is easier to use Definition 3 to verify that a certain
stochastic process is a Brownian motion. Let us first verify that the two
definitions are equivalent.
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Proposition 4. The two definitions of standard Brownian motions are equiv-
alent.

Proof. Given Definition 1, it is easy to know that E [𝑊 (𝑠)] = 0 for all
𝑠 ≥ 0 since𝑊 (𝑠) ∼ N (0, 𝑠). What we need is to verify that {𝑊 (𝑡)}𝑡≥0 in
Definition 1 is a Gaussian process and to compute the covariance of𝑊 (𝑠)
and𝑊 (𝑡) in Definition 1. It is worth noting that the sum of two

Gaussians is not necessarily a Gaussian, un-
less they are joint Gaussian. Independence
is just a special case of joint Gaussian (the
covariance is zero).

Note that ∀0 ≤ 𝑠 < 𝑡 and ∀𝑎,𝑏, we have

𝑎𝑊 (𝑠) + 𝑏𝑊 (𝑡) = (𝑎 + 𝑏)𝑊 (𝑠) + 𝑏 (𝑊 (𝑡) −𝑊 (𝑠)) .

Since𝑊 (𝑠) and𝑊 (𝑡)−𝑊 (𝑠) are two independent Gaussian’s, 𝑎𝑊 (𝑠)+𝑏𝑊 (𝑡)
is still a Gaussian.

By the distributive law of covariance, for any 0 ≤ 𝑠 ≤ 𝑡 , we have

Cov(𝑊 (𝑠),𝑊 (𝑡)) = Cov (𝑊 (𝑠),𝑊 (𝑡) −𝑊 (𝑠) +𝑊 (𝑠))
= Cov(𝑊 (𝑠),𝑊 (𝑡) −𝑊 (𝑠)) + Cov(𝑊 (𝑠),𝑊 (𝑠))
= Var [𝑊 (𝑠)] = 𝑠 .

Then we consider the counterpart. Given Definition 3, we can deduce the
first and fourth property in Definition 1 directly. For any 0 ≤ 𝑡𝑖−1 ≤ 𝑡𝑖 ≤
𝑡 𝑗−1 ≤ 𝑡 𝑗 , we have

Cov(𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1),𝑊 (𝑡 𝑗 ) −𝑊 (𝑡 𝑗−1))
= Cov(𝑊 (𝑡𝑖 ),𝑊 (𝑡 𝑗 )) + Cov(𝑊 (𝑡𝑖−1),𝑊 (𝑡 𝑗−1))
− Cov(𝑊 (𝑡𝑖 ),𝑊 (𝑡 𝑗−1)) − Cov(𝑊 (𝑡𝑖−1),𝑊 (𝑡 𝑗 ))

= 𝑡𝑖 + 𝑡𝑖−1 − 𝑡𝑖 − 𝑡𝑖−1 = 0,

which yields the independence of𝑊 (𝑡𝑖 ) −𝑊 (𝑡𝑖−1) and𝑊 (𝑡 𝑗 ) −𝑊 (𝑡 𝑗−1).
Thus, the {𝑊 (𝑡)}𝑡≥0 in Definition 3 satisfies independent increments.

It is easy to verify that ∀𝑠, 𝑡 > 0,𝑊 (𝑠 + 𝑡) −𝑊 (𝑠) is a Gaussian with mean
0. Note that

Var [𝑊 (𝑡 + 𝑠) −𝑊 (𝑠)] = E
[
(𝑊 (𝑡 + 𝑠) −𝑊 (𝑠))2

]
= E

[
𝑊 (𝑡 + 𝑠)2

]
+ E

[
𝑊 (𝑠)2

]
− 2E [𝑊 (𝑡 + 𝑠)𝑊 (𝑠)]

= Var
[
𝑊 (𝑡 + 𝑠)2

]
+ Var

[
𝑊 (𝑠)2

]
− 2Cov (𝑊 (𝑡 + 𝑠),𝑊 (𝑠))

= 𝑡 + 𝑠 + 𝑠 − 2𝑠 = 𝑡 .

Thus, the {𝑊 (𝑡)}𝑡≥0 in Definition 3 satisfies stationary increments. □

Example 1. Suppose {𝑊 (𝑡)}𝑡≥0 is a standard Brownian motion. We claim
that {𝑋 (𝑡)}𝑡≥0 is also a standard Brownian motion where 𝑋 (0) = 0 and
𝑋 (𝑡) = 𝑡 ·𝑊 ( 1𝑡 ) for 𝑡 > 0.

We verify the three requirements in Definition 3.
Since 𝑋 (𝑡) = 𝑡 ·𝑊 ( 1𝑡 ) which is the composition of two (almost surely)

continuous function, {𝑋 (𝑡)}𝑡≥0 is continuous almost surely as well. For any
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𝑎1, 𝑎2, . . . , 𝑎𝑛 and 𝑡1, 𝑡2, . . . , 𝑡𝑛 ≥ 0,
∑𝑛

𝑖=1 𝑎𝑖𝑋 (𝑡𝑖 ) =
∑𝑛

𝑖=1 𝑎𝑖𝑡𝑖 ·𝑊 ( 1
𝑡𝑖
). Since

{𝑊 (𝑡)} is standard Brownian motion,
∑𝑛

𝑖=1 𝑎𝑖𝑡𝑖 ·𝑊 ( 1
𝑡𝑖
) is Gaussian. Thus,

{𝑋 (𝑡)}𝑡≥0 is a Gaussian process. For 0 ≤ 𝑠 < 𝑡 ,

Cov(𝑋 (𝑠), 𝑋 (𝑡)) = Cov(𝑠𝑊 ( 1
𝑠
), 𝑡𝑊 ( 1

𝑡
))

= 𝑠𝑡 · Cov(𝑊 ( 1
𝑠
),𝑊 ( 1

𝑡
))

= 𝑠𝑡 · 1
𝑡
= 𝑠 .

Thus, {𝑋 (𝑡)}𝑡≥0 is a standard Brownian motion.

2 Brownian Bridge

In the last lecture, we already caluclated the distribution of𝑊 (𝑡) condi-
tioned on𝑊 (𝑢) = 𝑥 for some 𝑢 ≥ 𝑡 . We use 𝑋 (𝑡) to denote this process, and
𝑋 (𝑡) is usually called a Brownian bridge.

𝑏

𝑥

𝜏b 𝑢

Figure 1: A Brownian bridge

We know from previous calculations that 𝑋 (𝑡) ∼ 𝑁 ( 𝑡𝑢𝑥,
𝑡 (𝑢−𝑡 )

𝑢 ) is a
Gaussian. Since the conditional distribution of a multidimensional Gaussian
distribution is Gaussian as well, 𝑋 (𝑡) is a Gaussian process. As a result, it is
useful to compute the covariance of this process.

Recall𝑊 (𝑡) is a standard Brownian motion. For any 𝑠 ≤ 𝑡 , we have E
[
𝑊 (𝑡 )2

��𝑊 (𝑢 ) = 𝑥
]
= Var [𝑋 (𝑡 ) ] +

E [𝑋 (𝑡 ) ]2
Cov(𝑋 (𝑠), 𝑋 (𝑡))

= Cov (𝑊 (𝑠),𝑊 (𝑡) |𝑊 (𝑢) = 𝑥)
= E [𝑊 (𝑠) ·𝑊 (𝑡) |𝑊 (𝑢) = 𝑥] − E [𝑊 (𝑠) |𝑊 (𝑢) = 𝑥] · E [𝑊 (𝑡) |𝑊 (𝑢) = 𝑥]

=
∫ ∞

−∞
𝑦E [𝑊 (𝑠) |𝑊 (𝑡) = 𝑦,𝑊 (𝑢) = 𝑥] · 𝑓𝑊 (𝑡 ) |𝑊 (𝑢 ) (𝑦 | 𝑥) d𝑦 − 𝑠𝑡

𝑢2𝑥
2.

=
𝑠

𝑡
E

[
𝑊 (𝑡)2

��𝑊 (𝑢) = 𝑥
]
− 𝑠𝑡

𝑢2𝑥
2

=
𝑠 (𝑢 − 𝑡)

𝑢
.

Definition 5 (Standard Brownian Bridge). A standard Brownian motion
ending at𝑊 (1) = 0 is called a standard Brownian bridge.

We can verify that 𝑋 (𝑡) = 𝑊 (𝑡) − 𝑡𝑊 (1) is a standard Brownian bridge
by calculating its mean and covariances.
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Again like we did in the last lecture, we can compute the hitting time of
a standard Brownian bridge using the principle of reflection.

Example 2 (Hitting Time in a Brownian Bridge). Let {𝑊 (𝑡)}𝑡≥0 be a stan-
dard Brownian motion. Let 𝜏𝑏 ≜ inf {𝑡 ≥ 0 |𝑊 (𝑡) > 𝑏}. Then we compute
Pr [𝜏𝑏 < 𝑢 |𝑊 (𝑢) = 𝑥]. Note that if 𝑏 < 𝑥 , Pr [𝜏𝑏 < 𝑢 |𝑊 (𝑢) = 𝑥] = 1. Let𝜓
be the probability density function of standard Gaussian distribution, that is,

𝜓 (𝑥) = 1√
2𝜋

· 𝑒− 𝑥2
2 . If 𝑏 > 𝑥 , letting d𝑥 be an infinitesimal change, we have

Pr [𝜏𝑏 < 𝑢 |𝑊 (𝑢) = 𝑥] = Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) ∈ [𝑥, 𝑥 + d𝑥]]
Pr [𝑊 (𝑢) ∈ [𝑥, 𝑥 + d𝑥]]

=
Pr [𝜏𝑏 < 𝑢] · Pr [𝑊 (𝑢) ∈ [𝑥, 𝑥 + d𝑥] | 𝜏𝑏 < 𝑢]

𝑓𝑢 (𝑥) d𝑥
.

If we have known the value of 𝜏𝑏 and 𝜏𝑏 < 𝑢, we can regard {𝑊 (𝑢)}𝑡≥𝜏𝑏 as
a Brownian motion starting from 𝑏. Then we have

Pr [𝜏𝑏 < 𝑢] · Pr [𝑊 (𝑢) ∈ [𝑥, 𝑥 + d𝑥] | 𝜏𝑏 < 𝑢] = Pr [𝜏𝑏 < 𝑢] · Pr [𝑊 (𝑢) ∈ [2𝑏 − 𝑥 − d𝑥, 2𝑏 − 𝑥] | 𝜏𝑏 < 𝑢]
= Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) ∈ [2𝑏 − 𝑥 − d𝑥, 2𝑏 − 𝑥]]
= Pr [𝑊 (𝑢) ∈ [2𝑏 − 𝑥 − d𝑥, 2𝑏 − 𝑥]]
= 𝑓𝑢 (2𝑏 − 𝑥) d𝑥

Thus, when 𝑏 > 𝑥 , Pr [𝜏𝑏 < 𝑢 |𝑊 (𝑢) = 𝑥] = 𝑓𝑢 (2𝑏−𝑥 )
𝑓𝑢 (𝑥 ) = 𝑒−

2𝑏 (𝑏−𝑥 )
𝑢 .

When 𝑏 = 𝑥 , we have

Pr [𝜏𝑏 < 𝑢 |𝑊 (𝑢) = 𝑏] = Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) ∈ [𝑏, 𝑏 + d𝑏]]
Pr [𝑊 (𝑢) ∈ [𝑏, 𝑏 + d𝑏]] .

Note that

Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) ∈ [𝑏, 𝑏 + d𝑏]] = Pr [𝜏𝑏 < 𝑢] − Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) > 𝑏 + d𝑏] − Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) < 𝑏] .
(1)

We know that Pr [𝜏𝑏 < 𝑢] = 2
(
1 − Φ

(
𝑏√
𝑢

))
. Note that

Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) > 𝑏 + d𝑏] = Pr [𝑊 (𝑢) > 𝑏 + d𝑏]

= 1 − Φ

(
𝑏
√
𝑢

)
− Pr [𝑊 (𝑢) ∈ [𝑏, 𝑏 + d𝑏]] .

And

Pr [𝜏𝑏 < 𝑢 ∧𝑊 (𝑢) < 𝑏] = Pr [𝜏𝑏 < 𝑢] · Pr [𝑊 (𝑢) < 𝑏 | 𝜏𝑏 < 𝑢]

=
1
2
· Pr [𝜏𝑏 < 𝑢] = 1 − Φ

(
𝑏
√
𝑢

)
.

Thus, Equation (1) equals to Pr [𝑊 (𝑢) ∈ [𝑏, 𝑏 + d𝑏]] and

Pr [𝜏𝑏 < 𝑢 |𝑊 (𝑢) = 𝑏] = 1.
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3 Kolmogorov-Smirnov Test

In this section, we introduce an application of Brownian Bridge, the Kolmogorov-
Smirnov test.

Suppose that𝑈1,𝑈2, . . . ,𝑈𝑛 are independently sampled from some distri-
bution [0, 1] with CDF F. We would like to check if it is a uniform distribu-
tion, i.e., if the 𝐹 satisfies 𝐹 (𝑡) = 𝑡 for every 𝑡 ∈ [0, 1].

Let 𝐹𝑛 be the empirical cumulative distribution function, that is, for
𝑡 ∈ [0, 1], 𝐹𝑛 (𝑡) = 1

𝑛

∑𝑛
𝑖=1 1[𝑈𝑖 ≤ 𝑡]. It then follows from the law of large

numbers that

𝐹𝑛 (𝑡)
𝑛→∞−→ E

[
𝐹𝑛 (𝑡)

]
=

1
𝑛

𝑛∑
𝑖=1

Pr [𝑈𝑖 ≤ 𝑡] = 𝐹 (𝑡).

The idea of Kolmogorov-Smirnov test is to monitor the variable 𝐹𝑛 (𝑡) − 𝑡

for every 𝑡 ∈ [0, 1] and reject the uniformity hypothesis if there exists some
𝑡 that

���𝐹𝑛 (𝑡) − 𝑡
��� is large. Then our goal is to find a suitable rejection thresh-

old 𝑏 such that if 𝐹 is indeed a uniform distribution, the failure probability
lim𝑛→∞ Pr

[
max𝑡 ∈[0,1]

���𝐹𝑛 (𝑡) − 𝑡
��� ≥ 𝑏

]
is sufficiently small (i.e., ≤ 1

100 ). If 𝐹 is
a uniform distribution, for a fixed 𝑡 , we have

E
[
𝐹𝑛 (𝑡)

]
= 𝐹 (𝑡) = 𝑡 ;

Var
[
𝐹𝑛 (𝑡)

]
=

1
𝑛2

𝑛∑
𝑖=1

Var [1[𝑈𝑖 ≤ 𝑡]] = 1
𝑛
· 𝑡 (1 − 𝑡).

Let 𝑋𝑛 (𝑡) ≜
√
𝑛 · (𝐹𝑛 (𝑡) − 𝑡) for 𝑡 ∈ [0, 1]. By the Central Limit Theorem,

we have 𝑋𝑛 (𝑡) ∼ N (0, 𝑡 (1 − 𝑡)) when 𝑛 → ∞. For any 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

Cov(𝑋𝑛 (𝑠), 𝑋𝑛 (𝑡)) = 𝑛 · Cov
(
𝐹𝑛 (𝑠) − 𝑠, 𝐹𝑛 (𝑡) − 𝑡

)
=

1
𝑛
Cov

(
𝑛∑
𝑖=1

1[𝑈𝑖 ≤ 𝑠],
𝑛∑
𝑖=1

1[𝑈𝑖 ≤ 𝑡]
)

= Cov (1[𝑈1 ≤ 𝑠], 1[𝑈1 ≤ 𝑡])
= Pr [𝑈1 ≤ 𝑠,𝑈1 ≤ 𝑡] − Pr [𝑈1 ≤ 𝑠] Pr [𝑈1 ≤ 𝑡]
= 𝑠 (1 − 𝑡).

For any 0 ≤ 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑘 ≤ 1, let Σ =
(
Cov

(
𝑋𝑛 (𝑡𝑖 ), 𝑋𝑛 (𝑡 𝑗 )

) )
𝑖, 𝑗 . It

follows from the high-dimensional Central Limit Theorem that

(𝑋𝑛 (𝑡1), 𝑋𝑛 (𝑡2), . . . , 𝑋𝑛 (𝑡𝑘 ))𝑇
𝐷−→ N (0, Σ) ∼ (𝑋 (𝑡1), 𝑋 (𝑡2), . . . , 𝑋 (𝑡𝑘 ))𝑇 ,

where {𝑋 (𝑡)} is a standard Brownian Bridge. Then using the result in
Example 2, we have

lim
𝑛→∞

Pr
[
max
𝑡 ∈[0,1]

𝐹𝑛 (𝑡) − 𝑡 ≥ 𝑏

]
= Pr

[
max
𝑡 ∈[0,1]

𝑋 (𝑡) ≥
√
𝑛𝑏

]
= Pr

[
𝜏√𝑛𝑏 < 1

���𝑊 (1) = 0
]
= exp

{
−2𝑛𝑏2

}
.
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