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1 Diffusions

1.1 The Definition of Diffusion

A continuous stochastic process with Markov property is called a diffusion.1 1 This is an informal definition of diffusions
and it is enough for this course.In other words, a diffusion can be viewed as a Markov process in continu-

ous time with continuous sample paths.
Actually, diffusions can be built up from local Brownian motions in

the same way as differentiable functions being built up from local linear
functions. Imagine that we want to draw the image of a function 𝑓 with
knowing 𝑓 ′ (𝑡) = 𝑒𝑡 and 𝑓 (0) = 1. How to do this if you are not allowed to
integrate 𝑓 ′ (𝑡). A natural idea is to approximate 𝑓 using segmented linear
functions:

• Select a step length ℎ;

• Draw a segment on [0, ℎ] which starts from (0, 𝑓 (0)) with slope 𝑓 ′ (0) =
1;

• Draw a segment on [ℎ, 2ℎ] which starts from (ℎ,ℎ + 𝑓 (0)) with slope
𝑓 ′ (ℎ) = 𝑒ℎ ;

• . . . .

When ℎ → 0, our drawing is exactly the image of 𝑓 . This gives an intu-
ition that a differentiable function can be locally approximated as linear
functions.

A diffusion {𝑋 (𝑡)}𝑡≥0 is the stochastic analog of above process. That is,
if we are currently at the position 𝑋 (𝑡) = 𝑋𝑡 and consider the small time
interval [𝑡, 𝑡 + ℎ], the process acts as a

(
𝜇 (𝑋𝑡 ), 𝜎2 (𝑋𝑡 )

)
Brownian motion

where 𝜇 and 𝜎2 are functions of the position 𝑋𝑡 . Let 𝑍 ∼ N(0, 1) be a
standard Gaussian. We can break the process into segments and use these
normal random variables to simulate the diffusion:

• 𝑋ℎ = 𝑋0 + 𝜇 (𝑋0)ℎ + 𝜎 (𝑋0)
√
ℎ · 𝑍1;

• 𝑋2ℎ = 𝑋ℎ + 𝜇 (𝑋ℎ)ℎ + 𝜎 (𝑋ℎ)
√
ℎ · 𝑍2;

• . . . ,

where each 𝑍𝑖 are independent standard Gaussian. Then for any 𝑘 ∈ ℕ,
𝑋 (𝑘+1)ℎ − 𝑋𝑘ℎ ∼ N

(
𝜇 (𝑋𝑘ℎ)ℎ, 𝜎2 (𝑋𝑘ℎ)ℎ

)
.

Thus, when ℎ → 0, we can naturally develop a specification of diffusion:
A time homogeneous diffusion can be specified by two functions 𝜇 (𝑥) and
𝜎2 (𝑥) which satisfies:
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• ∀𝑡 , E [𝑋 (𝑡 + ℎ) − 𝑋 (𝑡) | 𝑋 (𝑡) = 𝑥] = 𝜇 (𝑥)ℎ + 𝑜 (ℎ);

• ∀𝑡 , Var [𝑋 (𝑡 + ℎ) − 𝑋 (𝑡) | 𝑋 (𝑡) = 𝑥] = 𝜎2 (𝑥)ℎ + 𝑜 (ℎ);

• ∀𝑡 , E
[
|𝑋 (𝑡 + ℎ) − 𝑋 (𝑡) |𝑝

�� 𝑋 (𝑡) = 𝑥
]
= 𝑜 (ℎ) for 𝑝 > 2.

Note that

Var [𝑋 (𝑡 + ℎ) − 𝑋 (𝑡) | 𝑋 (𝑡) = 𝑥]
= E

[
(𝑋 (𝑡 + ℎ) − 𝑋 (𝑡))2

�� 𝑋 (𝑡) = 𝑥
]
− (E [𝑋 (𝑡 + ℎ) − 𝑋 (𝑡) | 𝑋 (𝑡) = 𝑥])2

= E
[
(𝑋 (𝑡 + ℎ) − 𝑋 (𝑡))2

�� 𝑋 (𝑡) = 𝑥
]
− (𝜇 (𝑥)ℎ + 𝑜 (ℎ))2 .

Thus
Var [𝑋 (𝑡 + ℎ) − 𝑋 (𝑡) | 𝑋 (𝑡) = 𝑥] = 𝜎2 (𝑥)ℎ + 𝑜 (ℎ)

is equivalent to

E
[
(𝑋 (𝑡 + ℎ) − 𝑋 (𝑡))2

�� 𝑋 (𝑡) = 𝑥
]
= 𝜎2 (𝑥)ℎ + 𝑜 (ℎ).

Recall that in the analog of differentiable functions, we have d𝑓 (𝑡) =

𝑔(𝑡) d𝑡 where 𝑔(𝑡) is the derivative of 𝑓 . Similarly, for a diffusion {𝑋 (𝑡)}𝑡≥0
specified by 𝜇 (𝑥) and 𝜎2 (𝑥), we can write it as This expression is informal as we haven’t

give a mathematical meaning to the
notation 𝑑𝑊 (𝑡 ) . We will do this in the
next lecture, but for now, we can sloppily
understand it as a Brownian motion in an
infinitisimal time.

d𝑋 (𝑡) = 𝜇 (𝑋 (𝑡)) d𝑡 + 𝜎 (𝑋 (𝑡)) d𝑊 (𝑡),

where {𝑊 (𝑡)} is the standard Brownian motion and d𝑊 (𝑡) can be under-
stood as limℎ→0𝑊 (𝑡 + ℎ) −𝑊 (𝑡).

Example 1 (Ornstein-Uhlenbeck Process). Consider a diffusion {𝑋 (𝑡)}𝑡≥0
specified by 𝜎 (𝑥) = −𝑥 and 𝜎2 (𝑥) = 2 with 𝑋 (0) = 0. This diffusion always
has a tendency to 0 since if 𝑋 (𝑡) is large, 𝜇 (𝑋 (𝑡)) is also large towards the
reverse direction which acts as a spring intuitively. We can write this process
as

d𝑋 (𝑡) = −𝑋 (𝑡) d𝑡 +
√
2 d𝑊 (𝑡).

The process can be used to model the discrete Ehrenfest chain. Suppose we
have two boxes with 𝑎 balls in the first box and 𝑏 balls in the second box in the
initial state. In each round, we choose a ball uniformly at random among the
𝑎 + 𝑏 balls and put the chosen ball into the other box. It is more likely to choose
the balls in the box with more balls. Thus, this discrete Markov process tends to
the equilibrium state where each box has 𝑎+𝑏

2 balls.

Example 2 (Wright-Fisher Process). Next we consider a stochastic random
walk with absorbing boundaries. Let 𝜇 (𝑥) = 0, 𝜎2 (𝑥) = 𝑥 (1 − 𝑥) and
𝑋 (0) = 1

2 . Then this diffusion is jittery around 1
2 and is more steady around

the boundaries.
The process can be used to model the following model of racial reproduction.

Assume the total population is 𝑁 which is invariant over time. At the 𝑡-th
generation, there is 𝑋𝑡 black people and 𝑁 −𝑋𝑡 white people where 𝑋𝑡 is a non-
negative random variable. Assume that there is no interracial marriage and
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the child’s race is the same with his or her parents. At the 𝑡 + 1-th generation,
each person is white w.p. 1 − 𝑋𝑡

𝑁 and is black w.p. 𝑋𝑡
𝑁 . Assume the race of each

individual is independent with other people. If it starts with half white and
half black, then we want to ask: Will there be genocide after a long period of
time or will the two races tend to keep a balance?

The continuous version of the model is the Wright-Fisher process we just
introduced. It is equivalent to ask whether the process tends to keep jittery or
be absorbed. Since it seems to be “lazier” when it comes closer to the boundary,
the answer of this question is not obvious. In fact, however, after a sufficiently
long time, it does reach the boundary.

1.2 Geometric Brownian Motion

Let {𝑋 (𝑡)} be a (𝜇, 𝜎2) Brownian motion, that is, d𝑋 (𝑡) = 𝜇 d𝑡 + 𝜎𝑑𝑊 (𝑡).
Define 𝑌 (𝑡) = 𝑒𝑋 (𝑡 ) . Then {𝑌 (𝑡)} is called a geometric Brownian motion.
Geometric Brownian motion is widely applied to model the stock prices in
finance. In fact, we can consider a more generalized situation that {𝑌 (𝑡)} is
defined by 𝑌𝑡 = 𝑓 (𝑋𝑡 ) where 𝑓 is strictly monotone and twice differentiable.
Then we have the following proposition.

Proposition 1. Suppose {𝑋 (𝑡)} is a diffusion specified by 𝜇𝑋 (𝑥) and 𝜎2
𝑋 (𝑥).

Let 𝑓 be a strictly monotone and twice differentiable function. Define 𝑌 (𝑡) =

𝑓 (𝑋 (𝑡)). Then {𝑌 (𝑡)} is a diffusion specified by 𝜇𝑌 (𝑦) and 𝜎2
𝑌 (𝑦) which

satisfy

𝜇𝑌 (𝑦) = 𝜇𝑋 (𝑥) 𝑓 ′ (𝑥) +
1
2
𝜎2 (𝑥) 𝑓 ′′ (𝑥) and 𝜎2

𝑌 (𝑦) = (𝑓 ′ (𝑥))2 𝜎2
𝑋 (𝑥)

where 𝑥 = 𝑓 −1 (𝑦).

Proof. For a small ℎ, we have

E [𝑌 (𝑡 + ℎ) − 𝑌 (𝑡) | 𝑌 (𝑡) = 𝑦]
=E [𝑓 (𝑋 (𝑡 + ℎ)) − 𝑓 (𝑋 (𝑡)) | 𝑋 (𝑡) = 𝑥]

=E
[
𝑓 ′ (𝑋 (𝑡)) (𝑋 (𝑡 + ℎ) − 𝑋 (𝑡)) + 1

2
𝑓 ′′ (𝑋 (𝑡)) (𝑋 (𝑡 + ℎ) − 𝑋 (𝑡))2

���� 𝑋 (𝑡) = 𝑥

]
+ 𝑜 (ℎ)

=𝜇𝑋 (𝑥) 𝑓 ′ (𝑥)ℎ + 1
2
𝜎2 (𝑥) 𝑓 ′′ (𝑥)ℎ + 𝑜 (ℎ),
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so that

𝜇𝑌 (𝑦) = lim
ℎ→0

E [𝑌 (𝑡 + ℎ) − 𝑌 (𝑡) | 𝑌 (𝑡) = 𝑦]
ℎ

= 𝜇𝑋 (𝑥) 𝑓 ′ (𝑥) +
1
2
𝜎2 (𝑥) 𝑓 ′′ (𝑥).

Similarly, we have

E
[
(𝑌 (𝑡 + ℎ) − 𝑌 (𝑡))2

�� 𝑌 (𝑡) = 𝑦
]

=E
[
(𝑓 (𝑋 (𝑡 + ℎ)) − 𝑓 (𝑋 (𝑡)))2

�� 𝑋 (𝑡) = 𝑥
]

=E
[
(𝑓 ′ (𝑋 (𝑡)) (𝑋 (𝑡 + ℎ)) − 𝑋 (𝑡))2

�� 𝑋 (𝑡) = 𝑥
]
+ 𝑜 (ℎ)

= (𝑓 ′ (𝑥))2 𝜎2
𝑋 (𝑥)ℎ + 𝑜 (ℎ),

so that

𝜎2
𝑌 (𝑦) = lim

ℎ→0

E
[
(𝑌 (𝑡 + ℎ) − 𝑌 (𝑡))2

�� 𝑌 (𝑡) = 𝑦
]

ℎ
= (𝑓 ′ (𝑥))2 𝜎2

𝑋 (𝑥) .

□

2 The Langevin Dynamics

2.1 Fokker-Planck Equation

The diffusion
d𝑌 (𝑡) = 𝜇 (𝑦) d𝑡 + 𝜎2 (𝑦) d𝑊𝑡

is a continuous time Markov chain. If we use 𝑔(𝑡, 𝑦) to denote the density of
𝑌 (𝑡), then it satisfies the following PDE, called Kolmogorov forward equation
or Fokker-Plank equation.

𝜕

𝜕𝑡
𝑔(𝑡,𝑦) = − 𝜕

𝜕𝑦
(𝜇 (𝑦) · 𝑝 (𝑡, 𝑦)) + 𝜕2𝑎

𝜕𝑦2

(
1
2
𝜎2 (𝑦) · 𝑝 (𝑡,𝑦)

)
.

Figure 1: Andrey Kolmogorov

In applications, it is more useful to study diffusions in high dimension.
Let 𝑛 ≥ 1 be an integer. An 𝑛-dimensional diffusion X𝑡 can be described by

dX𝑡 = 𝜇 (𝑡,X𝑡 )d𝑡 + Σ(𝑡,X𝑡 )dW𝑡 , (1)

where X𝑡 , 𝜇 (𝑡, x) ∈ ℝ𝑛 , Σ(𝑡, x) ∈ ℝ𝑛×𝑚 and W𝑡 is an𝑚-dimensional
standard Brownian motion. Its density 𝑝 (𝑡, x) satisfies the following 𝑛-
dimensional Fokker-Planck equation:

𝜕

𝜕𝑡
𝑝 (𝑡, x) = −

𝑛∑
𝑖=1

𝜕

𝜕𝑥𝑖
(𝜇𝑖 (𝑡, x)𝑝 (𝑡, x)) +

1
2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

( (
ΣΣT)

𝑖 𝑗 · 𝑝 (𝑡, x)
)
.

(2)
The derivation of Equation (2) is beyond the scope of this lecture and

you can find a proof in e.g. [SS19].
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3 The Langevin Dynamics
Are you familiar with this expression? Let’s
remove the random part, and it becomes to
the ODE

d𝑋𝑡 = −∇𝑓 (X𝑡 )d𝑡 .

The discrete version of above is

𝑋𝑡+1 − 𝑋𝑡 = −∇𝑓 (X𝑡 ) .

Yes, Langevin dynamics is simply gradient
descent with some additional Gaussian
white noises.

Let 𝑓 : ℝ𝑛 → ℝ be a differentiable function. The Langevin dynamics is the
following diffusion:

𝑑X𝑡 = −∇𝑓 (X𝑡 ) d𝑡 +
√
2 · dW𝑡 , (3)

where X𝑡 ∈ ℝ𝑛 andW𝑡 ∈ ℝ is the standard 𝑛-dimensional Brownian
motion (that is, each coordinate is an independent standard Brownian
motion).

It is easy to verify that 𝑔(𝑡, x) = 𝑝 (x) = 𝑒−𝑓 (x) satisfies Equation (2)
and therefore it is a stationary distribution of the Langevin dynamics. As
a result, Langevin dynamics can be used to in MCMC algorithm to sample
from a target distribution 𝑝 (x) = 𝑒−𝑓 () .

We will study the convergence of eq. (3) for strongly convex 𝑓 . Recall
a differentiable function 𝑓 : ℝ𝑛 → ℝ is𝑚-strongly convex if for every
x, y ∈ ℝ𝑛 , it holds that

𝑓 (y) ≥ 𝑓 (x) + ⟨∇𝑓 (x), y − x⟩ + 𝑚

2
· ∥y − x∥22. (4)

Swapping x and y, we obtain

𝑓 (x) ≥ 𝑓 (y) + ⟨∇𝑓 (y), x − y⟩ + 𝑚

2
· ∥y − x∥22. (5)

Adding eq. (5) and eq. (4), we obtain

⟨x − y,∇𝑓 (x) − ∇𝑓 (y)⟩ ≥ 𝑚 · ∥x − y∥22. (6)

Figure 2: Paul Langevin

Let 𝜋 be the stationary distribution of the Langevin dynamics. Formally,
𝜋 (d𝑥) = 𝑒−𝑓 (𝑥 )d𝑥 . We want to study the convergence rate of X𝑡 to its
stationary distribution 𝜋 . To this end, we let Y𝑡 be another instance of
eq. (3); that is,

𝑑Y𝑡 = −∇𝑓 (Y𝑡 ) d𝑡 +
√
2 · dW𝑡 ,

and we let Y0 ∼ 𝜋 .
We now couple X𝑡 and Y𝑡 using the same Brownian motion W𝑡 and prove

that the distance ∥X𝑡 − Y𝑡 ∥22 decays exponentially with respect to 𝑡 . For
every x, define Φ(x) = 1

2 ∥x∥
2
2. Then

d
d𝑡
Φ(x) = ⟨X𝑡 − Y𝑡 ,∇𝑓 (Y𝑡 ) − ∇𝑓 (X𝑡 )⟩.

Plugging in eq. (6), we obtain

d
d𝑡
Φ(X𝑡 − Y𝑡 ) ≤ −2𝑚 · Φ(X𝑡 − Y𝑡 ).

This implies that

∥X𝑡 − Y𝑡 ∥22 ≤ ∥X0 − Y0∥2 · 𝑒−2𝑚𝑡 .
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