[AI2613 Lecture 7] Doob Martingale, Azuma-Hoeffding, McDiarmid

June 15, 2023

1 Hoeffding's Inequality

We introduced the following Hoeffding's inequality to bound the concentration for the sum of a sequence independent random variables.

Theorem 1 (Hoeffding's Inequality) Let $X_1, ..., X_n$ be independent random variables where each $X_i \in [a_i, b_i]$ for certain $a_i \leq b_i$ with probability 1. Let $X = \sum_{i=1}^n X_i$ and $\mu \triangleq \mathbf{E}[X] = \sum_{i=1}^n \mathbf{E}[X_i]$, then

$$\Pr\left[|X - \mu| \ge t\right] \le 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

for all $t \ge 0$.

Before proving Theorem 1 in Section 3, we see a practical application of Hoeffding's inequality.

Example 1 (Meal Delivery) During the quarantine of our campus, the professors deliver meals for students using their private cars or trikes. Then a practical problem is how to estimate the amount of meals on a trike conveniently (See the news).

Assume there are n boxes of meal on the trike ($n \ge 200$ and is unknown for us). Let X_i be the weight of the i-th box of meal. Assume that X_1, X_2, \ldots, X_n are i.i.d. random variables, each $X_i \in [250, 350]$ (unit: gram) and $\mu = \mathbf{E}[X_i] = 300$. Let S be the total weight of the meal boxes on the trike, that is, $S = \sum_{i=1}^{n} X_i$. We can weigh the meal boxes and use $\hat{n} = \frac{S}{\mu}$ as an estimator for n. Now we compute how accurate this estimator is.

Let $\delta \ge 0$ be a constant. By Hoeffding's inequality,

$$\Pr\left[|\hat{n} - n| > \delta n\right] = \Pr\left[|S - \mu n| > \delta \mu n\right] \le 2 \exp\left\{-\frac{2\delta^2 \mu^2 n^2}{\sum_{i=1}^n (350 - 250)^2}\right\}.$$
 (1)

Plugging μ = 300, δ = 0.05 and $n \ge$ 200 into Equation (1), by direct calculation, we have

$$\Pr\left[\hat{n} \in [0.95n, 1.05n]\right] \ge 1 - 2.4682 \times 10^{-4}.$$

2 Concentration on Martingale

We consider the balls-in-a-bag problem. There are *g* green balls and *r* red balls in a bag. These balls are the all same except for the color. We want to estimate the ratio $\frac{r}{r+g}$ by drawing balls. There are two scenarios.

• Draw balls with replacement. Let $X_i = 1$ [the *i*-th ball is red]. Let $X = \sum_{i=1}^{n} X_i$. Then clearly each $X_i \sim \text{Ber}\left(\frac{r}{r+g}\right)$ and $\mathbb{E}[X] = n \cdot \frac{r}{r+b}$.

Since all X_i 's are independent, we can directly apply Hoeffding's inequality and obtain

$$\Pr\left[|X - \mathbb{E}[X]| \ge t\right] \le 2 \exp\left(-\frac{2t^2}{n}\right).$$

Draw balls without replacement. Again we let Y_i = 1[the *i*-th ball is red], then unlike the case of drawing with replacement, variables in {Y_i} are dependent. Let Y = ∑ⁿ_{i=1} Y_i. We first calculate E [Y].

For every $i \ge 1$, $\mathbb{E}[Y_i]$ is the probability that the *i*-th draw is a red ball. Note that drawing without replacement is equivalent to first drawing a uniform permutation of r + g balls and drawing each ball one by one in that order. Therefore, the probability of $Y_i = 1$ is $\frac{r \cdot (r+g-1)!}{(r+g)!} = \frac{r}{r+g}$. So we have $\mathbb{E}[Y] = n \cdot \frac{r}{r+g}$.

However, since $\{Y_i\}$ are dependent, we cannot apply Hoeffding's inequality directly. This motivate us to generalize it by removing the requirement of independence.

2.1 Azuma-Hoeffding's Inequality

Theorem 2 (Azuma-Hoeffding's Inequality) Let $\{Z_n\}_{n\geq 0}$ is a martingale with respect to a filtration $\{\mathcal{F}_n\}$. If for every $i \geq 1$, $|Z_i - Z_{i-1}| \leq c_i$ with probability 1, then

$$\Pr\left[|Z_n - Z_0| \ge t\right] \le 2 \exp\left(-\frac{2t^2}{\sum\limits_{i=1}^n c_i^2}\right).$$

Azuma-Hoeffding's inequality generalizes Hoeffding's inequality by letting $Z_n = \sum_{i=1}^n (X_i - \mathbb{E}[X_i])$ and $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$.

The proof of this theorem is in Section 3. The requirement of martingale in Theorem 2 seems to be even harder to satisfy than the requirement of independence. However, in many cases, we can construct a doob martingale to apply the Azuma-Hoeffding's inequality.

Definition 3 (Doob Martingale, Doob Sequence) Let X_1, \ldots, X_n be a sequence of (unnecessarily independent) random variables and $f(\overline{X}_{1,n}) = f(X_1, \ldots, X_n) \in \mathbb{R}$ be a function. For $i \ge 0$, Let $Z_i \triangleq \mathbb{E}\left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i}\right]$. Then we call $\{Z_n\}_{n\ge 0}$ a Doob martingale or a Doob sequence.

It is easy to verify that $\{Z_n\}_{n\geq 0}$ in Definition 3 is indeed a martingale w.r.t. $\{X_n\}$ by seeing

$$\mathbf{E}\left[Z_{i} \mid \overline{X}_{1,i-1}\right] = \mathbf{E}\left[\mathbf{E}[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i}] \mid \overline{X}_{1,i-1}\right] = \mathbf{E}\left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1}\right] = Z_{i-1}.$$

Let $\mathcal{F} = \sigma(\overline{X}_{1,i})$. We can see that Z_i is \mathcal{F}_i measurable by definition. Moreover, we know that $Z_0 = \mathbb{E}\left[f(\overline{X}_{1,n})\right]$ and $Z_n = f(\overline{X}_{1,n})$.

Recall the balls-in-a-bag problem we discussed above. Define $f : \mathbb{R}^n \to \mathbb{R}$ by letting $f(y_1, y_2, \ldots, y_n) = \sum_{i=1}^n y_i$. Then in the drawing without replacement scenario, $Y = \sum_{i=1}^n Y_i = f(Y_1, Y_2, \ldots, Y_n)$. Now we construct the Doob martingale for f.

Let $Z_i = \mathbf{E}\left[f(\overline{Y}_{1,n}) \mid \overline{Y}_{1,i}\right]$. We know that $Z_0 = \mathbf{E}\left[f(\overline{Y}_{1,n})\right] = \mathbf{E}\left[Y\right] = n \cdot \frac{r}{r+g}$ and $Z_n = f(\overline{Y}_{1,n})$. In order to apply Azuma-Hoeffding, we need to bound the *width* of the martingale $|Z_i - Z_{i-1}|$.

By definition,

$$Z_{i} - Z_{i-1} = \mathbf{E}\left[f(\overline{Y}_{1,n}) \mid \overline{Y}_{1,i}\right] - \mathbf{E}\left[f(\overline{Y}_{1,n}) \mid \overline{Y}_{1,i-1}\right]$$

If we use S_i to denote the number of red balls among the first *i* balls, namely $S_i = \sum_{j=1}^{i} Y_j$, then

$$\mathbf{E}\left[f(\overline{Y}_{1,n}) \mid \overline{Y}_{1,i}\right] = \mathbf{E}\left[f(\overline{Y}_{1,n}) \mid S_i\right] = S_i + (n-i) \cdot \frac{r-S_i}{g+r-i}.$$

Therefore $S_i = S_{i-1} + Y_i$ and

$$Z_{i} - Z_{i-1} = \left(S_{i} + (n-i) \cdot \frac{r - S_{i}}{g + r - i}\right) - \left(S_{i-1} + (n-i+1) \cdot \frac{r - S_{i-1}}{g + r - i + 1}\right)$$
$$= \frac{g + r - n}{g + r - i} \left(Y_{i} + \frac{S_{i-1} - r}{g + r - i + 1}\right).$$

Note that $r \ge S_{i-1}$ and $g \ge (i-1) - S_{i-1}$, we have

$$Z_{i} - Z_{i-1} \le \frac{g+r-n}{g+r-i} \left(1 + \frac{S_{i-1}-r}{g+r-i+1} \right) \le \frac{g+r-n}{g+r-i} \le 1,$$

$$Z_{i} - Z_{i-1} \ge \frac{g+r-n}{g+r-i} \left(\frac{S_{i-1}-r}{g+r-i+1} \right) \ge -\frac{g+r-n}{g+r-i} \ge -1.$$

Therefore $-1 \le X_i \le 1$ and we can apply Azuma-Hoeffding to $Z_n - Z_0$ to obtain

$$\Pr\left[|Y - \mathbf{E}[Y]| \ge t\right] \le 2 \exp\left(-\frac{t^2}{2n}\right).$$

2.2 McDiarmids Inequality

The Doob sequence we used in the balls-in-a-bag example is a very powerful and general tool to obtain concentration bounds. For a model defined by *n* random variables X_1, \ldots, X_n and any quantity $f(X_1, \ldots, X_n)$ that we want to estimate, we can apply the Azuma-Hoeffding inequality to the Doob sequence of *f*. As shown in the previous example, the quality of the bound relies on the *width* of the martingale, that is, the magnitude of $|Z_i - Z_{i-1}|$. To determine the width of each $|Z_i - Z_{i-1}|$ is relatively easy if the function *f* and the variables $\{X_i\}_{1 \le i \le n}$ enjoy certain nice properties. **Definition 4 (c-Lipschitz Function)** A function $f(x_1, \dots, x_n)$ satisfies *c*-Lipschitz condition if

$$\forall i \in [n], \forall x_1, \cdots, x_n, \forall y_i: |f(x_1, \cdots, x_i, \cdots, x_n) - f(x_1, \cdots, y_i, \cdots, x_n)| \leq c.$$

The McDiarmid's inequality is the application of Azuma-Hoeffding inequality to Lipschitz f and independent $\{X_i\}$.

Theorem 5 (McDiarmid's Inequality) Let f be a function on n variables satisfying c-Lipschitz condition and X_1, \dots, X_n be n independent variables. Then we have

$$\Pr\left[\left|f\left(X_{1},\cdots,X_{n}\right)-\operatorname{E}\left[f\left(X_{1},\cdots,X_{n}\right)\right]\right|\geq t\right]\leq2e^{-\frac{2t^{2}}{nc^{2}}}$$

Proof. We use f and $\{X_i\}_{i \ge 1}$ to define a Doob martingale $\{Z_i\}_{i \ge 1}$:

$$\forall i: Z_i = \mathbf{E}\left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i}\right].$$

Then

$$Z_i - Z_{i-1} = \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i} \right] - \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1} \right].$$

Next we try to determine the width of $Z_i - Z_{i-1}$. Clearly

$$Z_i - Z_{i-1} \ge \inf_{x} \left\{ \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1}, X_i = x \right] - \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1} \right] \right\},\$$

and

$$Z_i - Z_{i-1} \le \sup_{y} \left\{ \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1}, X_i = y \right] - \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1} \right] \right\}.$$

The gap between the upper bound and the lower bound is

$$\sup_{x,y} \left\{ \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1}, X_i = y \right] - \mathbf{E} \left[f(\overline{X}_{1,n}) \mid \overline{X}_{1,i-1}, X_i = x \right] \right\}.$$

For every *x*, *y* and $\sigma_1, \ldots, \sigma_{i-1}$,

$$\begin{split} \mathbf{E} \left[f(\overline{X}_{1,n}) \middle| \bigwedge_{1 \le j \le i-1} X_j = \sigma_j, X_i = y \right] - \mathbf{E} \left[f(\overline{X}_{1,n}) \middle| \bigwedge_{1 \le j \le i-1} X_j = \sigma_j, X_i = x \right] \\ &= \sum_{\sigma_{i+1}, \dots, \sigma_n} \left(\Pr\left[\bigwedge_{i+1 \le j \le n} X_j = \sigma_j \middle| \bigwedge_{1 \le j \le i-1} X_j = \sigma_j, X_i = y \right] \cdot f(\sigma_1, \dots, \sigma_{i-1}, y, \sigma_{i+1}, \dots, \sigma_n) \\ &- \Pr\left[\bigwedge_{i+1 \le j \le n} X_j = \sigma_j \middle| \bigwedge_{1 \le j \le i-1} X_j = \sigma_j, X_i = x \right] \cdot f(\sigma_1, \dots, \sigma_{i-1}, x, \sigma_{i+1}, \dots, \sigma_n) \right) \\ \stackrel{(\heartsuit)}{=} \sum_{\sigma_{i+1}, \dots, \sigma_n} \Pr\left[\bigwedge_{i+1 \le j \le n} X_j = \sigma_j \right] \cdot (f(\sigma_1, \dots, \sigma_{i-1}, y, \sigma_{i+1}, \dots, \sigma_n) - f(\sigma_1, \dots, \sigma_{i-1}, x, \sigma_{i+1}, \dots, \sigma_n)) \\ \stackrel{(\bigstar)}{\leq} c. \end{split}$$

where (\heartsuit) uses independence of $\{X_i\}$ and (\clubsuit) uses the *c*-Lipsichitz property of *f*.

Applying Azuma-Hoeffding, we have

$$\Pr\left[|Z_n - Z_0| \ge t\right] = \Pr\left[|f(X_1, \cdots, X_n) - \mathbb{E}\left[f(X_1, \cdots, X_n)\right]| \ge t\right] \le 2e^{-\frac{2t^2}{nc^2}}$$

Then we examine two applications of McDiarmid's inequality.

Example 2 (Pattern matching) Let $P \in \{0, 1\}^k$ be a fixed string. For a random string $X \in \{0, 1\}^n$, what is the expected number of occurrences of P in X?

The expectation of occurrence times can be easily calculated using the linearity of expectations. We define n independent random variables X_1, \dots, X_n , where X_i denotes i-th character of X. Let $Y = f(X_1, \dots, X_n)$ be the number of occurrences of P in X. Note that there are at most n - k + 1 occurrences of P in X, and we can enumerate the first position of each occurrence. By the linearity of expectation, we have

$$\mathbf{E}\left[f\right] = \frac{n-k+1}{2^k}.$$

We can then use McDarmid's inequality to show that f is well-concentrated. To see this, we note that variables in $\{X_i\}$ are independent and the function f is k-Lipschitz: If we change one bit of X, the number of occurrences changes at most k.

Therefore

$$\Pr[|Z_n - Z_0| \ge t] = \Pr[|f - \mathbb{E}[f]| \ge t] \le 2e^{-\frac{2t^2}{nk^2}}.$$

Another application of McDiarmid's Inequality is to establish the concentration of chromatic number for Erdős-Rényi random graphs $\mathcal{G}(n, p)$.

Example 3 (Chromatic Number of $\mathcal{G}(n, p)$) Recall the notation $\mathcal{G}(n, p)$ specifies a distribution over all undirected simple graphs with n vertices. In the model, each of the $\binom{n}{2}$ possible edges exists with probability p independently.

For a graph $G \sim \mathcal{G}(n, p)$, we use $\chi(G)$ to denote its chromatic number, the minimum number q so that G can be properly colored using q colors. There are different ways to represent G using random variables.

The most natural way is to introduce a variable X_e for every pair of vertices $e = \{u, v\} \subseteq V$ where $X_e = \mathbf{1}$ [the edge e exists in G]. Then $\{X_e\}$ are independent and the chromatic number can be written as a function $\chi(X_{e_1}, X_{e_2}, \ldots, X_{e_{\binom{n}{2}}})$. It is easy to see that χ is 1-Lipschitz as removing to adding one edge can only change the chromatic number by at most one. So by McDarmid's inequality, we have

$$\Pr[|\chi - \mathbf{E}[\chi]| \ge t] \le 2e^{-2t^2 {\binom{n}{2}}^{-1}}$$

However, this bound is not satisfactory as we need to set $t = \Theta(n)$ in order to upper bound the RHS by a constant.

We can encode the graph G in a more efficient way while reserving the Lipschitz and the independence property. Suppose the vertex set of G is $\{v_1, \ldots, v_n\}$. We define n random variables Y_1, \cdots, Y_n , where Y_i encodes the edges between v_i and $\{v_1, \cdots, v_{i-1}\}$. Once Y_1, \cdots, Y_n are given, the graph is known, so the chromatic number can be written as a function $\chi(Y_1, \ldots, Y_n)$. Since Y_i only involves the connections between v_i and v_1, \cdots, v_{i-1} , the n variables are independent.

It is also easy to see that if Y_i changes, the chromatic number changes at most one. Hence χ is 1-Lipschitz as well. Applying McDiarmid's inequality we have

$$\Pr\left[|\chi - \mathbf{E}\left[\chi\right]| \ge t\right] \le 2e^{-\frac{2t^2}{n}}.$$

In this way, we only need $t = \Theta(\sqrt{n})$ to bound the RHS.

3 Proof

3.1 Proof of Theorem 1

First, we prove the following Hoeffding's lemma which will be the main technical ingredient to prove the inequality.

Lemma 6 Let X be a random variable with E[X] = 0 and $X \in [a, b]$. Then it holds that

$$\operatorname{E}\left[e^{\alpha X}\right] \leq \exp\left(\frac{\alpha^2(b-a)^2}{8}\right) \text{ for all } \alpha \in \mathbb{R}.$$

Proof.

We first find a linear function to upper bound $e^{\alpha x}$ so that we could apply the linearity of expectation to bound $\mathbf{E}\left[e^{\alpha X}\right]$. By the convexity of the exponential function and as illustrated in the figure below, we have

$$e^{\alpha x} \le \frac{e^{\alpha b} - e^{\alpha a}}{b - a}(x - a) + e^{\alpha a}, \text{ for all } a \le x \le b.$$

Thus,

$$\begin{split} \mathbf{E}\left[e^{\alpha x}\right] &\leq \frac{e^{\alpha b} - e^{\alpha a}}{b - a}(-a) + e^{\alpha a} = \frac{-a}{b - a}e^{\alpha b} + \frac{b}{b - a}e^{\alpha a} \\ &= e^{\alpha a}\left(\frac{b}{b - a} - \frac{a}{b - a}e^{\alpha(b - a)}\right) \\ &= e^{-\theta t}(1 - \theta + \theta e^{t}) \qquad \qquad (\theta = -\frac{a}{b - a}, t = \alpha(b - a)) \\ &\triangleq e^{g(t)}, \end{split}$$

where

$$g(t) = -\theta t + \log(1 - \theta + \theta e^t)$$

By Taylor's theorem, for every real t there exists a δ between 0 and t such that,

$$g(t) = g(0) + tg'(0) + \frac{1}{2}g''(\delta)t^2$$

Note that,

$$g(0) = 0;$$

$$g'(0) = -\theta + \frac{\theta e^{t}}{1 - \theta + \theta e^{t}} \Big|_{t=0}$$

$$= 0;$$

$$g''(\delta) = \frac{\theta e^{t} (1 - \theta + \theta e^{t}) - \theta e^{t}}{(1 - \theta + \theta e^{t})^{2}}$$

$$= \frac{(1 - \theta)\theta e^{t}}{(1 - \theta + \theta e^{t})^{2}}$$

$$= \frac{(1 - \theta)\theta}{\theta^{2} z + 2(1 - \theta)\theta + \frac{(1 - \theta)^{2}}{z}} \qquad (z = e^{t})$$

$$\leq \frac{(1 - \theta)\theta}{2\theta(1 - \theta) + 2(1 - \theta)\theta} \qquad (z > 0)$$

$$= \frac{1}{4}.$$

Thus

$$g(t) \le 0 + t \cdot 0 + \frac{1}{2}t^2 \cdot \frac{1}{4} = \frac{1}{8}t^2 = \frac{1}{8}\alpha^2(b-a)^2.$$

Therefore, $\mathbf{E}\left[e^{\alpha x}\right] \leq \exp\left(\frac{\alpha^2(b-a)^2}{8}\right)$ holds.

Armed with Hoeffding's lemma, it is routine to prove Hoeffding's inequality.

Proof. [Proof of Theorem 1]

First note that we can assume $\mathbf{E}[X_i] = 0$ and therefore $\mu = 0$ (if not so, replace X_i by $X_i - \mathbf{E}[X_i]$). By symmetry, we only need to prove that $\Pr[X \ge t] \le \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$. Since

$$\Pr\left[X \ge t\right] \stackrel{\alpha > 0}{=} \Pr\left[e^{\alpha X} \ge e^{\alpha t}\right] \le \frac{\operatorname{E}\left[e^{\alpha X}\right]}{e^{\alpha t}}$$

and

$$\mathbf{E}\left[e^{\alpha X}\right] = \mathbf{E}\left[e^{\alpha \sum_{i=1}^{n} X_{i}}\right] = \prod_{i=1}^{n} \mathbf{E}\left[e^{\alpha X_{i}}\right]$$

applying Hoeffding's lemma for each $\mathbb{E}\left[e^{\alpha X_i}\right]$ yields

$$\mathbf{E}\left[e^{\alpha X_i}\right] \leq \exp\left(\frac{\alpha^2(b_i-a_i)^2}{8}\right).$$

Let $\alpha = \frac{4t}{\sum_{i=1}^{n} (b_i - a_i)^2}$, we have,

$$\Pr\left[X \ge t\right] \le \frac{\prod_{i=1}^{n} \mathbb{E}\left[e^{\alpha X_{i}}\right]}{e^{\alpha t}} \le \exp\left(-\alpha t + \frac{\alpha^{2}}{8} \sum_{i=1}^{n} (b_{i} - a_{i})^{2}\right)$$
$$= \exp\left(-\frac{2t^{2}}{\sum_{i=1}^{n} (b_{i} - a_{i})^{2}}\right).$$

3.2 Proof of Theorem 2

Now we will sketch a proof of the Azuma-Hoeffding, which is quite similar to our proof of the Hoeffding inequality.

Proof. [Proof of Theorem 2]

Recall when we were trying to prove the Hoeffding inequality, the most difficult part is to estimate the term

$$\mathbf{E}\left[e^{\alpha Z_{n}}\right] = e^{\alpha Z_{0}} \cdot \mathbf{E}\left[\prod_{i=1}^{n} e^{\alpha (Z_{i}-Z_{i-1})}\right].$$

In the case of Azuma-Hoeffding, we can use the property of martingales instead of independence to obtain a bound of this term. To see this, we have

$$\mathbf{E}\left[\prod_{i=1}^{n} e^{\alpha Z_{i}-Z_{i-1}}\right] = \mathbf{E}\left[\mathbf{E}\left[\prod_{i=1}^{n} e^{\alpha Z_{i}-Z_{i-1}} |\mathcal{F}_{n-1}\right]\right]$$
$$= \mathbf{E}\left[\prod_{i=1}^{n-1} e^{\alpha Z_{i}-Z_{i-1}} \mathbf{E}\left[e^{\alpha Z_{n}-Z_{n-1}} |\mathcal{F}_{n-1}\right]\right]$$

The bounds then follows by an induction argument and a conditional expectation version of Hoeffding lemma:

$$\mathbf{E}\left[e^{\alpha(Z_n-Z_{n-1})} \mid \mathcal{F}_{n-1}\right] \leq e^{-\frac{\alpha c_i^2}{8}}.$$

The proof is almost the same as our proof of Hoeffding lemma in the last lecture. $\hfill \Box$