[AI2613 Lecture 7] Doob Martingale, Azuma-Hoeffding, McDiarmid

Fune 15, 2023

1 Hoeffding's Inequality

We introduced the following Hoeffding's inequality to bound the concentration for the sum of a sequence independent random variables.

Theorem 1 (Hoeffding's Inequality) Let X_{1}, \ldots, X_{n} be independent random variables where each $X_{i} \in\left[a_{i}, b_{i}\right]$ for certain $a_{i} \leq b_{i}$ with probability 1. Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu \triangleq \mathbf{E}[X]=\sum_{i=1}^{n} \mathbf{E}\left[X_{i}\right]$, then

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

for all $t \geq 0$.
Before proving Theorem 1 in Section 3, we see a practical application of Hoeffding's inequality.

Example 1 (Meal Delivery) During the quarantine of our campus, the professors deliver meals for students using their private cars or trikes. Then a practical problem is how to estimate the amount of meals on a trike conveniently (See the news).

Assume there are n boxes of meal on the trike ($n \geq 200$ and is unknown for us). Let X_{i} be the weight of the i-th box of meal. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables, each $X_{i} \in[250,350]$ (unit: gram) and $\mu=\mathrm{E}\left[X_{i}\right]=300$. Let S be the total weight of the meal boxes on the trike, that is, $S=\sum_{i=1}^{n} X_{i}$. We can weigh the meal boxes and use $\hat{n}=\frac{S}{\mu}$ as an estimator for n. Now we compute how accurate this estimator is.

Let $\delta \geq 0$ be a constant. By Hoeffding's inequality,

$$
\begin{equation*}
\operatorname{Pr}[|\hat{n}-n|>\delta n]=\operatorname{Pr}[|S-\mu n|>\delta \mu n] \leq 2 \exp \left\{-\frac{2 \delta^{2} \mu^{2} n^{2}}{\sum_{i=1}^{n}(350-250)^{2}}\right\} \tag{1}
\end{equation*}
$$

Plugging $\mu=300, \delta=0.05$ and $n \geq 200$ into Equation (1), by direct calculation, we have

$$
\operatorname{Pr}[\hat{n} \in[0.95 n, 1.05 n]] \geq 1-2.4682 \times 10^{-4}
$$

2 Concentration on Martingale

We consider the balls-in-a-bag problem. There are g green balls and r red balls in a bag. These balls are the all same except for the color. We want to estimate the ratio $\frac{r}{r+g}$ by drawing balls. There are two scenarios.

- Draw balls with replacement. Let $X_{i}=1$ [the i-th ball is red]. Let $X=$ $\sum_{i=1}^{n} X_{i}$. Then clearly each $X_{i} \sim \operatorname{Ber}\left(\frac{r}{r+g}\right)$ and $\mathbf{E}[X]=n \cdot \frac{r}{r+b}$.
Since all X_{i} 's are independent, we can directly apply Hoeffding's inequality and obtain

$$
\operatorname{Pr}[|X-\mathbf{E}[X]| \geq t] \leq 2 \exp \left(-\frac{2 t^{2}}{n}\right)
$$

- Draw balls without replacement. Again we let $Y_{i}=\mathbf{1}$ [the i-th ball is red], then unlike the case of drawing with replacement, variables in $\left\{Y_{i}\right\}$ are dependent. Let $Y=\sum_{i=1}^{n} Y_{i}$. We first calculate $\mathbf{E}[Y]$.

For every $i \geq 1, \mathrm{E}\left[Y_{i}\right]$ is the probability that the i-th draw is a red ball. Note that drawing without replacement is equivalent to first drawing a uniform permutation of $r+g$ balls and drawing each ball one by one in that order. Therefore, the probabilty of $Y_{i}=1$ is $\frac{r \cdot(r+g-1)!}{(r+g)!}=\frac{r}{r+g}$. So we have $\mathrm{E}[Y]=n \cdot \frac{r}{r+g}$.

However, since $\left\{Y_{i}\right\}$ are dependent, we cannot apply Hoeffding's inequality directly. This motivate us to generalize it by removing the requirement of independence.

2.1 Azuma-Hoeffding's Inequality

Theorem 2 (Azuma-Hoeffding's Inequality) Let $\left\{Z_{n}\right\}_{n \geq 0}$ is a martingale with respect to a filtration $\left\{\mathcal{F}_{n}\right\}$. If for every $i \geq 1,\left|Z_{i}-Z_{i-1}\right| \leq c_{i}$ with probability 1, then

$$
\operatorname{Pr}\left[\left|Z_{n}-Z_{0}\right| \geq t\right] \leq 2 \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right)
$$

Azuma-Hoeffding's inequality generalizes Hoeffding's inequality by letting $Z_{n}=\sum_{i=1}^{n}\left(X_{i}-\mathrm{E}\left[X_{i}\right]\right)$ and $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$.

The proof of this theorem is in Section 3. The requirement of martingale in Theorem 2 seems to be even harder to satisfy than the requirement of independence. However, in many cases, we can construct a doob martingale to apply the Azuma-Hoeffding's inequality.

Definition 3 (Doob Martingale, Doob Sequence) Let X_{1}, \ldots, X_{n} be a sequence of (unnecessarily independent) random variables and $f\left(\bar{X}_{1, n}\right)=$ $f\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}$ be a function. For $i \geq 0$, Let $Z_{i} \triangleq \mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i}\right]$. Then we call $\left\{Z_{n}\right\}_{n \geq 0}$ a Doob martingale or a Doob sequence.

It is easy to verify that $\left\{Z_{n}\right\}_{n \geq 0}$ in Definition 3 is indeed a martingale w.r.t. $\left\{X_{n}\right\}$ by seeing

$$
\mathbf{E}\left[Z_{i} \mid \bar{X}_{1, i-1}\right]=\mathbf{E}\left[\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i}\right] \mid \bar{X}_{1, i-1}\right]=\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}\right]=Z_{i-1} .
$$

Let $\mathcal{F}=\sigma\left(\bar{X}_{1, i}\right)$. We can see that Z_{i} is \mathcal{F}_{i} measurable by definition. Moreover, we know that $Z_{0}=\mathbf{E}\left[f\left(\bar{X}_{1, n}\right)\right]$ and $Z_{n}=f\left(\bar{X}_{1, n}\right)$.

Recall the balls-in-a-bag problem we discussed above. Define $f: \mathbb{R}^{n} \rightarrow$ \mathbb{R} by letting $f\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\sum_{i=1}^{n} y_{i}$. Then in the drawing without replacement scenario, $Y=\sum_{i=1}^{n} Y_{i}=f\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$. Now we construct the Doob martingale for f.

Let $Z_{i}=\mathbf{E}\left[f\left(\bar{Y}_{1, n}\right) \mid \bar{Y}_{1, i}\right]$. We know that $Z_{0}=\mathbf{E}\left[f\left(\bar{Y}_{1, n}\right)\right]=\mathbf{E}[Y]=$ $n \cdot \frac{r}{r+g}$ and $Z_{n}=f\left(\bar{Y}_{1, n}\right)$. In order to apply Azuma-Hoeffding, we need to bound the width of the martingale $\left|Z_{i}-Z_{i-1}\right|$.

By definition,

$$
Z_{i}-Z_{i-1}=\mathbf{E}\left[f\left(\bar{Y}_{1, n}\right) \mid \bar{Y}_{1, i}\right]-\mathbf{E}\left[f\left(\bar{Y}_{1, n}\right) \mid \bar{Y}_{1, i-1}\right] .
$$

If we use S_{i} to denote the number of red balls among the first i balls, namely $S_{i}=\sum_{j=1}^{i} Y_{j}$, then

$$
\mathbf{E}\left[f\left(\bar{Y}_{1, n}\right) \mid \bar{Y}_{1, i}\right]=\mathbf{E}\left[f\left(\bar{Y}_{1, n}\right) \mid S_{i}\right]=S_{i}+(n-i) \cdot \frac{r-S_{i}}{g+r-i} .
$$

Therefore $S_{i}=S_{i-1}+Y_{i}$ and

$$
\begin{aligned}
Z_{i}-Z_{i-1} & =\left(S_{i}+(n-i) \cdot \frac{r-S_{i}}{g+r-i}\right)-\left(S_{i-1}+(n-i+1) \cdot \frac{r-S_{i-1}}{g+r-i+1}\right) \\
& =\frac{g+r-n}{g+r-i}\left(Y_{i}+\frac{S_{i-1}-r}{g+r-i+1}\right)
\end{aligned}
$$

Note that $r \geq S_{i-1}$ and $g \geq(i-1)-S_{i-1}$, we have

$$
\begin{aligned}
& Z_{i}-Z_{i-1} \leq \frac{g+r-n}{g+r-i}\left(1+\frac{S_{i-1}-r}{g+r-i+1}\right) \leq \frac{g+r-n}{g+r-i} \leq 1 \\
& Z_{i}-Z_{i-1} \geq \frac{g+r-n}{g+r-i}\left(\frac{S_{i-1}-r}{g+r-i+1}\right) \geq-\frac{g+r-n}{g+r-i} \geq-1
\end{aligned}
$$

Therefore $-1 \leq X_{i} \leq 1$ and we can apply Azuma-Hoeffding to $Z_{n}-Z_{0}$ to obtain

$$
\operatorname{Pr}[|Y-\mathbf{E}[Y]| \geq t] \leq 2 \exp \left(-\frac{t^{2}}{2 n}\right)
$$

2.2 McDiarmids Inequality

The Doob sequence we used in the balls-in-a-bag example is a very powerful and general tool to obtain concentration bounds. For a model defined by n random variables X_{1}, \ldots, X_{n} and any quantity $f\left(X_{1}, \ldots, X_{n}\right)$ that we want to estimate, we can apply the Azuma-Hoeffding inequality to the Doob sequence of f. As shown in the previous example, the quality of the bound relies on the width of the martingale, that is, the magnitude of $\left|Z_{i}-Z_{i-1}\right|$.
To determine the width of each $\left|Z_{i}-Z_{i-1}\right|$ is relatively easy if the function f and the variables $\left\{X_{i}\right\}_{1 \leq i \leq n}$ enjoy certain nice properties.

Definition 4 (c-Lipschitz Function) A function $f\left(x_{1}, \cdots, x_{n}\right)$ satisfies c Lipschitz condition if
$\forall i \in[n], \forall x_{1}, \cdots, x_{n}, \forall y_{i}: \quad\left|f\left(x_{1}, \cdots, x_{i}, \cdots, x_{n}\right)-f\left(x_{1}, \cdots, y_{i}, \cdots, x_{n}\right)\right| \leq c$.
The McDiarmid's inequality is the application of Azuma-Hoeffding inequality to Lipschitz f and independent $\left\{X_{i}\right\}$.

Theorem 5 (McDiarmid's Inequality) Let f be a function on n variables satisfying c-Lipschitz condition and X_{1}, \cdots, X_{n} be n independent variables.
Then we have

$$
\operatorname{Pr}\left[\left|f\left(X_{1}, \cdots, X_{n}\right)-\mathbf{E}\left[f\left(X_{1}, \cdots, X_{n}\right)\right]\right| \geq t\right] \leq 2 e^{-\frac{2 t^{2}}{n c^{2}}}
$$

Proof. We use f and $\left\{X_{i}\right\}_{i \geq 1}$ to define a Doob martingale $\left\{Z_{i}\right\}_{i \geq 1}$:

$$
\forall i: Z_{i}=\mathrm{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i}\right]
$$

Then

$$
Z_{i}-Z_{i-1}=\mathrm{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i}\right]-\mathrm{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}\right]
$$

Next we try to determine the width of $Z_{i}-Z_{i-1}$. Clearly

$$
Z_{i}-Z_{i-1} \geq \inf _{x}\left\{\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}, X_{i}=x\right]-\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}\right]\right\}
$$

and

$$
Z_{i}-Z_{i-1} \leq \sup _{y}\left\{\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}, X_{i}=y\right]-\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}\right]\right\} .
$$

The gap between the upper bound and the lower bound is

$$
\sup _{x, y}\left\{\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}, X_{i}=y\right]-\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bar{X}_{1, i-1}, X_{i}=x\right]\right\}
$$

For every x, y and $\sigma_{1}, \ldots, \sigma_{i-1}$,

$$
\begin{aligned}
& \mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bigwedge_{1 \leq j \leq i-1} X_{j}=\sigma_{j}, X_{i}=y\right]-\mathbf{E}\left[f\left(\bar{X}_{1, n}\right) \mid \bigwedge_{1 \leq j \leq i-1} X_{j}=\sigma_{j}, X_{i}=x\right] \\
&= \sum_{\sigma_{i+1}, \ldots, \sigma_{n}}\left(\operatorname{Pr}\left[\bigwedge_{i+1 \leq j \leq n} X_{j}=\left.\sigma_{j}\right|_{1 \leq j \leq i-1} X_{j}=\sigma_{j}, X_{i}=y\right] \cdot f\left(\sigma_{1}, \ldots, \sigma_{i-1}, y, \sigma_{i+1}, \ldots, \sigma_{n}\right)\right. \\
&\left.-\operatorname{Pr}\left[\bigwedge_{i+1 \leq j \leq n} X_{j}=\sigma_{j} \mid \bigwedge_{1 \leq j \leq i-1} X_{j}=\sigma_{j}, X_{i}=x\right] \cdot f\left(\sigma_{1}, \ldots, \sigma_{i-1}, x, \sigma_{i+1}, \ldots, \sigma_{n}\right)\right) \\
& \stackrel{(\mathcal{\varrho})}{=} \sum_{\sigma_{i+1}, \ldots, \sigma_{n}} \operatorname{Pr}\left[\bigwedge_{i+1 \leq j \leq n} X_{j}=\sigma_{j}\right] \cdot\left(f\left(\sigma_{1}, \ldots, \sigma_{i-1}, y, \sigma_{i+1}, \ldots, \sigma_{n}\right)-f\left(\sigma_{1}, \ldots, \sigma_{i-1}, x, \sigma_{i+1}, \ldots, \sigma_{n}\right)\right) \\
& \text { (夫) } c .
\end{aligned}
$$

where (\odot) uses independence of $\left\{X_{i}\right\}$ and (e) uses the c-Lipsichitz property of f.

Applying Azuma-Hoeffding, we have
$\operatorname{Pr}\left[\left|Z_{n}-Z_{0}\right| \geq t\right]=\operatorname{Pr}\left[\left|f\left(X_{1}, \cdots, X_{n}\right)-\mathbf{E}\left[f\left(X_{1}, \cdots, X_{n}\right)\right]\right| \geq t\right] \leq 2 e^{-\frac{2 t^{2}}{n c^{2}}}$.

Then we examine two applications of McDiarmid's inequality.
Example 2 (Pattern matching) Let $P \in\{0,1\}^{k}$ be a fixed string. For a random string $X \in\{0,1\}^{n}$, what is the expected number of occurrences of P in X ?

The expectation of occurrence times can be easily calculated using the linearity of expectations. We define n independent random variables X_{1}, \cdots, X_{n}, where X_{i} denotes i-th character of X. Let $Y=f\left(X_{1}, \cdots, X_{n}\right)$ be the number of occurrences of P in X. Note that there are at most $n-k+1$ occurrences of P in X, and we can enumerate the first position of each occurrence. By the linearity of expectation, we have

$$
\mathbf{E}[f]=\frac{n-k+1}{2^{k}}
$$

We can then use McDarmid's inequality to show that f is well-concentrated. To see this, we note that variables in $\left\{X_{i}\right\}$ are independent and the function f is k-Lipschitz: If we change one bit of X, the number of occurrences changes at most k.

Therefore

$$
\operatorname{Pr}\left[\left|Z_{n}-Z_{0}\right| \geq t\right]=\operatorname{Pr}[|f-\mathbf{E}[f]| \geq t] \leq 2 e^{-\frac{2 t^{2}}{n k^{2}}}
$$

Another application of McDiarmid's Inequality is to establish the concentration of chromatic number for Erdős-Rényi random graphs $\mathcal{G}(n, p)$.

Example 3 (Chromatic Number of $\mathcal{G}(n, p)$) Recall the notation $\mathcal{G}(n, p)$ specifies a distribution over all undirected simple graphs with n vertices. In the model, each of the $\binom{n}{2}$ possible edges exists with probability p independently.

For a graph $G \sim \mathcal{G}(n, p)$, we use $\chi(G)$ to denote its chromatic number, the minimum number q so that G can be properly colored using q colors. There are different ways to represent G using random variables.

The most natural way is to introduce a variable X_{e} for every pair of vertices $e=\{u, v\} \subseteq V$ where $X_{e}=1[$ the edge e exists in $G]$. Then $\left\{X_{e}\right\}$ are independent and the chromatic number can be written as a function $\chi\left(X_{e_{1}}, X_{e_{2}}, \ldots, X_{\binom{n}{2}}\right)$. It is easy to see that χ is 1 -Lipschitz as removing to adding one edge can only change the chromatic number by at most one. So by McDarmid's inequality, we have

$$
\operatorname{Pr}[|\chi-\mathbf{E}[\chi]| \geq t] \leq 2 e^{-2 t^{2}\binom{n}{2}^{-1}}
$$

However, this bound is not satisfactory as we need to set $t=\Theta(n)$ in order to upper bound the RHS by a constant.

We can encode the graph G in a more efficient way while reserving the Lipschitz and the independence property. Suppose the vertex set of G is $\left\{v_{1}, \ldots, v_{n}\right\}$. We define n random variables Y_{1}, \cdots, Y_{n}, where Y_{i} encodes the edges between v_{i} and $\left\{v_{1}, \cdots, v_{i-1}\right\}$. Once Y_{1}, \cdots, Y_{n} are given, the graph is known, so the chromatic number can be written as a function $\chi\left(Y_{1}, \ldots, Y_{n}\right)$. Since Y_{i} only involves the connections between v_{i} and v_{1}, \cdots, v_{i-1}, the n variables are independent.

It is also easy to see that if Y_{i} changes, the chromatic number changes at most one. Hence χ is 1-Lipschitz as well. Applying McDiarmid's inequality we have

$$
\operatorname{Pr}[|\chi-\mathbf{E}[\chi]| \geq t] \leq 2 e^{-\frac{2 t^{2}}{n}}
$$

In this way, we only need $t=\Theta(\sqrt{n})$ to bound the RHS.

3 Proof

3.1 Proof of Theorem 1

First, we prove the following Hoeffding's lemma which will be the main technical ingredient to prove the inequality.

Lemma 6 Let X be a random variable with $\mathrm{E}[X]=0$ and $X \in[a, b]$. Then it holds that

$$
\mathbf{E}\left[e^{\alpha X}\right] \leq \exp \left(\frac{\alpha^{2}(b-a)^{2}}{8}\right) \text { for all } \alpha \in \mathbb{R}
$$

Proof.
We first find a linear function to upper bound $e^{\alpha x}$ so that we could apply the linearity of expectation to bound $\mathbf{E}\left[e^{\alpha X}\right]$. By the convexity of the exponential function and as illustrated in the figure below, we have

$$
e^{\alpha x} \leq \frac{e^{\alpha b}-e^{\alpha a}}{b-a}(x-a)+e^{\alpha a}, \text { for all } a \leq x \leq b
$$

Thus,

$$
\begin{aligned}
\mathrm{E}\left[e^{\alpha x}\right] & \leq \frac{e^{\alpha b}-e^{\alpha a}}{b-a}(-a)+e^{\alpha a}=\frac{-a}{b-a} e^{\alpha b}+\frac{b}{b-a} e^{\alpha a} \\
& =e^{\alpha a}\left(\frac{b}{b-a}-\frac{a}{b-a} e^{\alpha(b-a)}\right) \\
& =e^{-\theta t}\left(1-\theta+\theta e^{t}\right) \quad\left(\theta=-\frac{a}{b-a}, t=\alpha(b-a)\right) \\
& \triangleq e^{g(t)},
\end{aligned}
$$

where

$$
g(t)=-\theta t+\log \left(1-\theta+\theta e^{t}\right)
$$

By Taylor's theorem, for every real t there exists a δ between 0 and t such that,

$$
g(t)=g(0)+t g^{\prime}(0)+\frac{1}{2} g^{\prime \prime}(\delta) t^{2}
$$

Note that,

$$
\begin{array}{rlr}
g(0) & =0 \\
g^{\prime}(0) & =-\theta+\left.\frac{\theta e^{t}}{1-\theta+\theta e^{t}}\right|_{t=0} \\
& =0 \\
g^{\prime \prime}(\delta) & =\frac{\theta e^{t}\left(1-\theta+\theta e^{t}\right)-\theta e^{t}}{\left(1-\theta+\theta e^{t}\right)^{2}} \\
& =\frac{(1-\theta) \theta e^{t}}{\left(1-\theta+\theta e^{t}\right)^{2}} \\
& =\frac{(1-\theta) \theta}{\theta^{2} z+2(1-\theta) \theta+\frac{(1-\theta)^{2}}{z}} \\
& \leq \frac{(1-\theta) \theta}{2 \theta(1-\theta)+2(1-\theta) \theta} \\
& =\frac{1}{4}
\end{array}
$$

Thus

$$
g(t) \leq 0+t \cdot 0+\frac{1}{2} t^{2} \cdot \frac{1}{4}=\frac{1}{8} t^{2}=\frac{1}{8} \alpha^{2}(b-a)^{2}
$$

Therefore, $\mathrm{E}\left[e^{\alpha x}\right] \leq \exp \left(\frac{\alpha^{2}(b-a)^{2}}{8}\right)$ holds.
Armed with Hoeffding's lemma, it is routine to prove Hoeffding's inequality.
Proof. [Proof of Theorem 1]
First note that we can assume $\mathbf{E}\left[X_{i}\right]=0$ and therefore $\mu=0$ (if not so, replace X_{i} by $\left.X_{i}-\mathbf{E}\left[X_{i}\right]\right)$. By symmetry, we only need to prove that $\operatorname{Pr}[X \geq t] \leq \exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)$. Since

$$
\operatorname{Pr}[X \geq t] \stackrel{\alpha>0}{=} \operatorname{Pr}\left[e^{\alpha X} \geq e^{\alpha t}\right] \leq \frac{\mathbf{E}\left[e^{\alpha X}\right]}{e^{\alpha t}}
$$

and

$$
\mathbf{E}\left[e^{\alpha X}\right]=\mathbf{E}\left[e^{\alpha \sum_{i=1}^{n} X_{i}}\right]=\prod_{i=1}^{n} \mathbf{E}\left[e^{\alpha X_{i}}\right],
$$

applying Hoeffding's lemma for each $\mathbf{E}\left[e^{\alpha X_{i}}\right]$ yields

$$
\mathbf{E}\left[e^{\alpha X_{i}}\right] \leq \exp \left(\frac{\alpha^{2}\left(b_{i}-a_{i}\right)^{2}}{8}\right)
$$

Let $\alpha=\frac{4 t}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}$, we have,

$$
\begin{aligned}
\operatorname{Pr}[X \geq t] \leq \frac{\prod_{i=1}^{n} \mathbf{E}\left[e^{\alpha X_{i}}\right]}{e^{\alpha t}} & \leq \exp \left(-\alpha t+\frac{\alpha^{2}}{8} \sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}\right) \\
& =\exp \left(-\frac{2 t^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right) .
\end{aligned}
$$

3.2 Proof of Theorem 2

Now we will sketch a proof of the Azuma-Hoeffding, which is quite similar to our proof of the Hoeffding inequality.
Proof. [Proof of Theorem 2]
Recall when we were trying to prove the Hoeffding inequality, the most difficult part is to estimate the term

$$
\mathbf{E}\left[e^{\alpha Z_{n}}\right]=e^{\alpha Z_{0}} \cdot \mathbf{E}\left[\prod_{i=1}^{n} e^{\alpha\left(Z_{i}-Z_{i-1}\right)}\right]
$$

In the case of Azuma-Hoeffding, we can use the property of martingales instead of independence to obtain a bound of this term. To see this, we have

$$
\begin{aligned}
\mathbf{E}\left[\prod_{i=1}^{n} e^{\alpha Z_{i}-Z_{i-1}}\right] & =\mathbf{E}\left[\mathbf{E}\left[\prod_{i=1}^{n} e^{\alpha Z_{i}-Z_{i-1}} \mid \mathcal{F}_{n-1}\right]\right] \\
& =\mathbf{E}\left[\prod_{i=1}^{n-1} e^{\alpha Z_{i}-Z_{i-1}} \mathbf{E}\left[e^{\alpha Z_{n}-Z_{n-1}} \mid \mathcal{F}_{n-1}\right]\right]
\end{aligned}
$$

The bounds then follows by an induction argument and a conditional expectation version of Hoeffding lemma:

$$
\mathrm{E}\left[e^{\alpha\left(Z_{n}-Z_{n-1}\right)} \mid \mathcal{F}_{n-1}\right] \leq e^{-\frac{\alpha c_{i}^{2}}{8}}
$$

The proof is almost the same as our proof of Hoeffding lemma in the last lecture.

